AI-based predictive maintenance of solar photovoltaics systems: a comprehensive review
The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic (PV) systems and the future complex renewable energy infrastructure sets. The Machine learning (ML) technique is sub part of Artificial Intell...
Saved in:
| Published in | Energy Informatics Vol. 8; no. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
29.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2520-8942 2520-8942 |
| DOI | 10.1186/s42162-025-00594-6 |
Cover
| Abstract | The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic (PV) systems and the future complex renewable energy infrastructure sets. The Machine learning (ML) technique is sub part of Artificial Intelligence (AI) technology which has widened their adoption in energy analytics, resulting in numerous studies proposing different algorithms for monitoring, prediction, and prevention of system failures. The overview of these approaches is yet to be exhaustive in the existing literature regarding a metric-based evaluation. In addressing this gap, the article undertakes a structured review of the state-of-the-art recent peer-reviewed literature on predictive maintenance in solar PV systems. Each work will, therefore, be appraised against standardized performance metrics models, which include aspects such as accuracy, precision, recall, F1-score, area under the curve (AUC), and model-specific indicators- Root Mean Square Error (RMSE), latency, and execution delays. A numerical analysis table summarizes and compares the predictive capabilities of techniques such as Random Forest, CatBoost, Convolutional Neural Network (CNN) ensembles, Long Short-Term Memory (LSTM) autoencoders, Supervisory Control and Data Acquisition (SCADA) IoT frameworks, and Digital Twins. High-performing models, such as CatBoost and custom CNN architectures, indicate the effectiveness of hybrid deep learning strategies in fault diagnostics. The review establishes a new benchmark for evaluating PdM systems, readying the bar between academic innovation and real-world deployment. It outlines future research directions including model generalization, real-time edge AI deployment, and integration with climate-aware forecasting systems. This work complements an important entry point for other works by researchers and industry stakeholders’ intent on deploying scalable and resilient predictive maintenance solutions in renewable energy networks. |
|---|---|
| AbstractList | The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic (PV) systems and the future complex renewable energy infrastructure sets. The Machine learning (ML) technique is sub part of Artificial Intelligence (AI) technology which has widened their adoption in energy analytics, resulting in numerous studies proposing different algorithms for monitoring, prediction, and prevention of system failures. The overview of these approaches is yet to be exhaustive in the existing literature regarding a metric-based evaluation. In addressing this gap, the article undertakes a structured review of the state-of-the-art recent peer-reviewed literature on predictive maintenance in solar PV systems. Each work will, therefore, be appraised against standardized performance metrics models, which include aspects such as accuracy, precision, recall, F1-score, area under the curve (AUC), and model-specific indicators- Root Mean Square Error (RMSE), latency, and execution delays. A numerical analysis table summarizes and compares the predictive capabilities of techniques such as Random Forest, CatBoost, Convolutional Neural Network (CNN) ensembles, Long Short-Term Memory (LSTM) autoencoders, Supervisory Control and Data Acquisition (SCADA) IoT frameworks, and Digital Twins. High-performing models, such as CatBoost and custom CNN architectures, indicate the effectiveness of hybrid deep learning strategies in fault diagnostics. The review establishes a new benchmark for evaluating PdM systems, readying the bar between academic innovation and real-world deployment. It outlines future research directions including model generalization, real-time edge AI deployment, and integration with climate-aware forecasting systems. This work complements an important entry point for other works by researchers and industry stakeholders’ intent on deploying scalable and resilient predictive maintenance solutions in renewable energy networks. |
| Author | Vichare, Rohan Vijay Gaikwad, Sachin Ramnath |
| Author_xml | – sequence: 1 givenname: Rohan Vijay surname: Vichare fullname: Vichare, Rohan Vijay organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune Vidyarthi Griha’s College of Engineering – sequence: 2 givenname: Sachin Ramnath surname: Gaikwad fullname: Gaikwad, Sachin Ramnath email: sachin.gaikwad@sitpune.edu.in organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University) |
| BookMark | eNp9kMtqwzAQRUVJoWmaH-hKP6BWkiVF6i6EPgKBbkK3QpbHjYMtGctJ8N_XaQrtqquZgTmXy7lFkxADIHTP6ANjWj0mwZnihHJJKJVGEHWFplxySrQRfPJnv0HzlPaUUq6lkoZP0cdyTXKXoMBtB0Xl--oIuHFV6CG44AHHEqdYuw63u9jHY6x7V_mE05B6aNITdtjHZmR3ENKZ7eBYwekOXZeuTjD_mTO0fXnert7I5v11vVpuSNJaEb_gfpGLXBc5N4xqVZiSCpBOl14LKcyCm_HWLC8895k3TEvDXJF5r0CAyGYou8QeQuuGk6tr23ZV47rBMmrPcuxFjh3l2G85Vv1SaXwOn9DZfTx0Yez5H_UFyuBquQ |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 |
| Copyright_xml | – notice: The Author(s) 2025 |
| DBID | C6C ADTOC UNPAY |
| DOI | 10.1186/s42162-025-00594-6 |
| DatabaseName | Springer Nature OA Free Journals Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2520-8942 |
| ExternalDocumentID | 10.1186/s42162-025-00594-6 10_1186_s42162_025_00594_6 |
| GrantInformation_xml | – fundername: Symbiosis International (Deemed University) |
| GroupedDBID | 0R~ AAFWJ AAJSJ AAKKN AASML ABEEZ ACACY ACULB ADBBV ADMLS AEUYN AFFHD AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMKLP ARCSS BCNDV BENPR C24 C6C CCPQU EBLON EBS GROUPED_DOAJ IAO ISR ITC OK1 PHGZM PHGZT PIMPY PROAC SOJ ADTOC EJD UNPAY |
| ID | FETCH-LOGICAL-s886-c72c7b4b8db291086d9f04e5a8fc8454972904e81bdc2c3c918591ad3cc6e4e43 |
| IEDL.DBID | UNPAY |
| ISSN | 2520-8942 |
| IngestDate | Thu Oct 30 06:07:27 EDT 2025 Thu Oct 30 01:18:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Photovoltaic systems Fault detection Renewable energy Machine learning Predictive maintenance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-s886-c72c7b4b8db291086d9f04e5a8fc8454972904e81bdc2c3c918591ad3cc6e4e43 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1186/s42162-025-00594-6 |
| ParticipantIDs | unpaywall_primary_10_1186_s42162_025_00594_6 springer_journals_10_1186_s42162_025_00594_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20251029 |
| PublicationDateYYYYMMDD | 2025-10-29 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251029 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Energy Informatics |
| PublicationTitleAbbrev | Energy Inform |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| SSID | ssj0002856592 |
| Score | 2.309895 |
| SecondaryResourceType | review_article |
| Snippet | The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic... |
| SourceID | unpaywall springer |
| SourceType | Open Access Repository Publisher |
| SubjectTerms | Computer Science Information Systems and Communication Service Review |
| SummonAdditionalLinks | – databaseName: Springerlink Fully Open Access Journals(OpenAccess) dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAG_GWB0YsqOM4DltVURUkmArqFjm2owqVJIpbIf49d3mgDgiJMZKT4c73-HJ33xFybRQYkNOCucwGDG5IyOKQW1BI6ISF_JzHOO_8_CLHr-JpGk7boTDfdbt3JcnaU9dmreStF7wvOcP1qzXJCJPrZAPyD44LG4btjMN7_bsoxFphNyHz66srdc9tsrnMS_31qefzldAy2iM7bU5IB40S98mayw_Ibrdvgbbmd0jeBo8Mo46lZYX1FfRU9EMj4wPSZjhaZNQjVKXlrFgU4HgA9xtPG7Zmf081xQ7yys2arnXazK0ckcnoYTIcs3YvAvNKSWYibqJUpMqmPMZFSTbO7oQLtcqMEoD3IF-GZ8hHreEmMHEfOeq0DYyRTjgRHJNeXuTuhFAHgBDwmhY4i5AGTkcOLdxasFTAQdEpuenElLR32yc1bFAyaaSagFSTWqqJhOM_okzKhi3jj-Nn__v6OdniqEIIHDy-IL1FtXSXkBEs0qv6AnwDpCuuWg priority: 102 providerName: Springer Nature |
| Title | AI-based predictive maintenance of solar photovoltaics systems: a comprehensive review |
| URI | https://link.springer.com/article/10.1186/s42162-025-00594-6 https://doi.org/10.1186/s42162-025-00594-6 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: ADMLS dateStart: 20190502 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2520-8942 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: BENPR dateStart: 20181001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: AAJSJ dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: C6C dateStart: 20181201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springerlink Fully Open Access Journals(OpenAccess) customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: C24 dateStart: 20181201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5uexAf_IGKio48-GimS9Ms9a0Mxxw4BDeZTyVNMibOdawdon-9d20nQ0T0pVC4QrncXe7j7r4j5NwocCCnBXNj6zGwEJ8FPrdwIL4TFvJzHuC8811fdoeiN_JHJU0OzsKs1--bSl6mgjclZ7h0NacWYbJCatKHvLtKasP-ffiE2-N8wEAqEHw1FfPjh2u1zi2yuZzN9fubnk7XrpPOTrGXKM1ZCLGL5KWxzOKG-fjG0fi3P90l22VWScPCDPbIhpvtk8fwluElZel8geUYDGz0VSNBBLJsOJqMaYrIls4nSZZAnMr0s0lpQe6cXlNNseF84SZFkzstxlwOyKBzM2h3WblGgaVKSWZa3LRiESsb8wD3KtlgfCWcr9XYKAHwENJreIf01RpuPBM0kdJOW88Y6YQT3iGpzpKZOyLUAX4EeKcFji7EntMthwHBWnBsgE2tY3Kx0nBUukIa5ShDyajQTwT6iXL9RBLEv04hmhfkGr-In_xP_JRUs8XSnUHOkMV1UgvD3kOvTiptLvAp2_Ucf9dLM_oEQh6-CA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHQoDb8QbD4xYUMdxHLYIUbWl7UJB3SzHdtShpFHTCvHvOedRdUBIjJGcDHe-x5e7-w6hOy3AgKxixCbGI3BDfBL61IBCfMsM5Oc0dPPOwxHvvrP-xJ9UQ2F53e1elyQLT12YteAPOaNtTolbv1qQjBC-jZquyQrMsRlF_bf--t8KFb6rFtYzMr--vFH53EWtVZqp7y81m20El84B2quyQhyVajxEWzY9Qvv1xgVcGeAx-oh6xMUdg7OFq7A4X4U_leN8cMQZFs8TnDuwirPpfDkH1wPIX-e45GvOn7DCrod8Yadl3zouJ1dO0LjzMn7ukmozAsmF4EQHVAcxi4WJaehWJZkweWTWVyLRggHig4wZniEjNZpqT4dtx1KnjKc1t8wy7xQ10nlqzxC2AAkBsSnmphFiz6rAOhs3BmwVkFBwju5rMcnqdueyAA6Cy1KqEqQqC6lKDsfXopRZyZfxx_GL_339FrW64-FADnqj10u0Q506IYzQ8Ao1louVvYb8YBnfVNfhBy-Rss4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSDwG3og3HhixSh3HddiqQtXyqBgK6hY5tqMilSRqUiH-PXdJW3VASIyRnAz38N3l7vuOkGujwIGcFszF1mNgIT4LfG5BIb4TFvJzHiDe-aUvu2_icegPl1D85bT7vCVZYRqQpSkp6pmNKxdXsp4L3pCc4SrWknCEyVWyJiC64Q6Dtmwv_rJw5WPfcI6W-fXVpR7oFtmYJpn-_tLj8VKY6eyS7Vl-SFuVQvfIikv2yc589wKdueIBeW_1GEYgS7MJ9lrw1qKfGtkfkELD0TSmOZatNBulRQqXUKE_TE4r5ub8jmqK0-QTN6om2GmFYTkkg87DoN1lsx0JLFdKMtPkphmJSNmIB7g0yQbxrXC-VrFRAmo_yJ3hGXJTa7jxTNBAvjptPWOkE054R6SWpIk7JtRBcQi1mxaIS4g8p5sOvd1a8FqoiZon5GYupnBm53lYlhBKhpVUQ5BqWEo1lHB8Icowq5gz_jh--r-vX5H11_tO-NzrP52RTY7ahHjCg3NSKyZTdwGJQhFdlrbwA7fotas |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA66PYgP_kBFRSUPPprp0jRNfRvimILDh03mU0mTlImzLWuH6F_vXVtliIg-Fq4QLneX-7i77wg5NQocyGnBXGI9Bhbis9DnFi7Ed8JCfs5DnHe-G8rBWNxO_ElDk4OzMMv1-66S54XgXckZLl2tqEWYXCVt6UPe3SLt8fC-94jb43zAQCoU_HMq5scfl2qd62Rtkeb67VXPZkvPSX-z3ktUVCyE2EXy3FmUcce8f-No_NtJt8hGk1XSXm0G22TFpTvkoXfD8JGyNJ9jOQYDG33RSBCBLBuOZgktENnSfJqVGcSpUj-ZgtbkzsUl1RQbzuduWje503rMZZeM-tejqwFr1iiwQinJTMBNEItY2ZiHuFfJhsmFcL5WiVEC4CGk1_AN6as13Hgm7CKlnbaeMdIJJ7w90kqz1O0T6gA_ArzTAkcXYs_pwGFAsBYcG2BTcEDOPjUcNa5QRBXKUDKq9ROBfqJKP5EE8a9biPKaXOMX8cP_iR-RVjlfuGPIGcr4pDGWDzR6ueA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-based+predictive+maintenance+of+solar+photovoltaics+systems%3A+a+comprehensive+review&rft.jtitle=Energy+Informatics&rft.au=Vichare%2C+Rohan+Vijay&rft.au=Gaikwad%2C+Sachin+Ramnath&rft.date=2025-10-29&rft.pub=Springer+International+Publishing&rft.eissn=2520-8942&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs42162-025-00594-6&rft.externalDocID=10_1186_s42162_025_00594_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8942&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8942&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8942&client=summon |