AI-based predictive maintenance of solar photovoltaics systems: a comprehensive review

The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic (PV) systems and the future complex renewable energy infrastructure sets. The Machine learning (ML) technique is sub part of Artificial Intell...

Full description

Saved in:
Bibliographic Details
Published inEnergy Informatics Vol. 8; no. 1
Main Authors Vichare, Rohan Vijay, Gaikwad, Sachin Ramnath
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 29.10.2025
Subjects
Online AccessGet full text
ISSN2520-8942
2520-8942
DOI10.1186/s42162-025-00594-6

Cover

Abstract The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic (PV) systems and the future complex renewable energy infrastructure sets. The Machine learning (ML) technique is sub part of Artificial Intelligence (AI) technology which has widened their adoption in energy analytics, resulting in numerous studies proposing different algorithms for monitoring, prediction, and prevention of system failures. The overview of these approaches is yet to be exhaustive in the existing literature regarding a metric-based evaluation. In addressing this gap, the article undertakes a structured review of the state-of-the-art recent peer-reviewed literature on predictive maintenance in solar PV systems. Each work will, therefore, be appraised against standardized performance metrics models, which include aspects such as accuracy, precision, recall, F1-score, area under the curve (AUC), and model-specific indicators- Root Mean Square Error (RMSE), latency, and execution delays. A numerical analysis table summarizes and compares the predictive capabilities of techniques such as Random Forest, CatBoost, Convolutional Neural Network (CNN) ensembles, Long Short-Term Memory (LSTM) autoencoders, Supervisory Control and Data Acquisition (SCADA) IoT frameworks, and Digital Twins. High-performing models, such as CatBoost and custom CNN architectures, indicate the effectiveness of hybrid deep learning strategies in fault diagnostics. The review establishes a new benchmark for evaluating PdM systems, readying the bar between academic innovation and real-world deployment. It outlines future research directions including model generalization, real-time edge AI deployment, and integration with climate-aware forecasting systems. This work complements an important entry point for other works by researchers and industry stakeholders’ intent on deploying scalable and resilient predictive maintenance solutions in renewable energy networks.
AbstractList The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic (PV) systems and the future complex renewable energy infrastructure sets. The Machine learning (ML) technique is sub part of Artificial Intelligence (AI) technology which has widened their adoption in energy analytics, resulting in numerous studies proposing different algorithms for monitoring, prediction, and prevention of system failures. The overview of these approaches is yet to be exhaustive in the existing literature regarding a metric-based evaluation. In addressing this gap, the article undertakes a structured review of the state-of-the-art recent peer-reviewed literature on predictive maintenance in solar PV systems. Each work will, therefore, be appraised against standardized performance metrics models, which include aspects such as accuracy, precision, recall, F1-score, area under the curve (AUC), and model-specific indicators- Root Mean Square Error (RMSE), latency, and execution delays. A numerical analysis table summarizes and compares the predictive capabilities of techniques such as Random Forest, CatBoost, Convolutional Neural Network (CNN) ensembles, Long Short-Term Memory (LSTM) autoencoders, Supervisory Control and Data Acquisition (SCADA) IoT frameworks, and Digital Twins. High-performing models, such as CatBoost and custom CNN architectures, indicate the effectiveness of hybrid deep learning strategies in fault diagnostics. The review establishes a new benchmark for evaluating PdM systems, readying the bar between academic innovation and real-world deployment. It outlines future research directions including model generalization, real-time edge AI deployment, and integration with climate-aware forecasting systems. This work complements an important entry point for other works by researchers and industry stakeholders’ intent on deploying scalable and resilient predictive maintenance solutions in renewable energy networks.
Author Vichare, Rohan Vijay
Gaikwad, Sachin Ramnath
Author_xml – sequence: 1
  givenname: Rohan Vijay
  surname: Vichare
  fullname: Vichare, Rohan Vijay
  organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune Vidyarthi Griha’s College of Engineering
– sequence: 2
  givenname: Sachin Ramnath
  surname: Gaikwad
  fullname: Gaikwad, Sachin Ramnath
  email: sachin.gaikwad@sitpune.edu.in
  organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University)
BookMark eNp9kMtqwzAQRUVJoWmaH-hKP6BWkiVF6i6EPgKBbkK3QpbHjYMtGctJ8N_XaQrtqquZgTmXy7lFkxADIHTP6ANjWj0mwZnihHJJKJVGEHWFplxySrQRfPJnv0HzlPaUUq6lkoZP0cdyTXKXoMBtB0Xl--oIuHFV6CG44AHHEqdYuw63u9jHY6x7V_mE05B6aNITdtjHZmR3ENKZ7eBYwekOXZeuTjD_mTO0fXnert7I5v11vVpuSNJaEb_gfpGLXBc5N4xqVZiSCpBOl14LKcyCm_HWLC8895k3TEvDXJF5r0CAyGYou8QeQuuGk6tr23ZV47rBMmrPcuxFjh3l2G85Vv1SaXwOn9DZfTx0Yez5H_UFyuBquQ
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID C6C
ADTOC
UNPAY
DOI 10.1186/s42162-025-00594-6
DatabaseName Springer Nature OA Free Journals
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2520-8942
ExternalDocumentID 10.1186/s42162-025-00594-6
10_1186_s42162_025_00594_6
GrantInformation_xml – fundername: Symbiosis International (Deemed University)
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ACACY
ACULB
ADBBV
ADMLS
AEUYN
AFFHD
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
BCNDV
BENPR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
IAO
ISR
ITC
OK1
PHGZM
PHGZT
PIMPY
PROAC
SOJ
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-s886-c72c7b4b8db291086d9f04e5a8fc8454972904e81bdc2c3c918591ad3cc6e4e43
IEDL.DBID UNPAY
ISSN 2520-8942
IngestDate Thu Oct 30 06:07:27 EDT 2025
Thu Oct 30 01:18:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Photovoltaic systems
Fault detection
Renewable energy
Machine learning
Predictive maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s886-c72c7b4b8db291086d9f04e5a8fc8454972904e81bdc2c3c918591ad3cc6e4e43
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1186/s42162-025-00594-6
ParticipantIDs unpaywall_primary_10_1186_s42162_025_00594_6
springer_journals_10_1186_s42162_025_00594_6
PublicationCentury 2000
PublicationDate 20251029
PublicationDateYYYYMMDD 2025-10-29
PublicationDate_xml – month: 10
  year: 2025
  text: 20251029
  day: 29
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Energy Informatics
PublicationTitleAbbrev Energy Inform
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
SSID ssj0002856592
Score 2.309895
SecondaryResourceType review_article
Snippet The need for predictive maintenance methods has arisen as a key element in improving operational efficiency, reliability, and life expectancy of photovoltaic...
SourceID unpaywall
springer
SourceType Open Access Repository
Publisher
SubjectTerms Computer Science
Information Systems and Communication Service
Review
SummonAdditionalLinks – databaseName: Springerlink Fully Open Access Journals(OpenAccess)
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAG_GWB0YsqOM4DltVURUkmArqFjm2owqVJIpbIf49d3mgDgiJMZKT4c73-HJ33xFybRQYkNOCucwGDG5IyOKQW1BI6ISF_JzHOO_8_CLHr-JpGk7boTDfdbt3JcnaU9dmreStF7wvOcP1qzXJCJPrZAPyD44LG4btjMN7_bsoxFphNyHz66srdc9tsrnMS_31qefzldAy2iM7bU5IB40S98mayw_Ibrdvgbbmd0jeBo8Mo46lZYX1FfRU9EMj4wPSZjhaZNQjVKXlrFgU4HgA9xtPG7Zmf081xQ7yys2arnXazK0ckcnoYTIcs3YvAvNKSWYibqJUpMqmPMZFSTbO7oQLtcqMEoD3IF-GZ8hHreEmMHEfOeq0DYyRTjgRHJNeXuTuhFAHgBDwmhY4i5AGTkcOLdxasFTAQdEpuenElLR32yc1bFAyaaSagFSTWqqJhOM_okzKhi3jj-Nn__v6OdniqEIIHDy-IL1FtXSXkBEs0qv6AnwDpCuuWg
  priority: 102
  providerName: Springer Nature
Title AI-based predictive maintenance of solar photovoltaics systems: a comprehensive review
URI https://link.springer.com/article/10.1186/s42162-025-00594-6
https://doi.org/10.1186/s42162-025-00594-6
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: ADMLS
  dateStart: 20190502
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: BENPR
  dateStart: 20181001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: AAJSJ
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: C6C
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springerlink Fully Open Access Journals(OpenAccess)
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: C24
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5uexAf_IGKio48-GimS9Ms9a0Mxxw4BDeZTyVNMibOdawdon-9d20nQ0T0pVC4QrncXe7j7r4j5NwocCCnBXNj6zGwEJ8FPrdwIL4TFvJzHuC8811fdoeiN_JHJU0OzsKs1--bSl6mgjclZ7h0NacWYbJCatKHvLtKasP-ffiE2-N8wEAqEHw1FfPjh2u1zi2yuZzN9fubnk7XrpPOTrGXKM1ZCLGL5KWxzOKG-fjG0fi3P90l22VWScPCDPbIhpvtk8fwluElZel8geUYDGz0VSNBBLJsOJqMaYrIls4nSZZAnMr0s0lpQe6cXlNNseF84SZFkzstxlwOyKBzM2h3WblGgaVKSWZa3LRiESsb8wD3KtlgfCWcr9XYKAHwENJreIf01RpuPBM0kdJOW88Y6YQT3iGpzpKZOyLUAX4EeKcFji7EntMthwHBWnBsgE2tY3Kx0nBUukIa5ShDyajQTwT6iXL9RBLEv04hmhfkGr-In_xP_JRUs8XSnUHOkMV1UgvD3kOvTiptLvAp2_Ucf9dLM_oEQh6-CA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHQoDb8QbD4xYUMdxHLYIUbWl7UJB3SzHdtShpFHTCvHvOedRdUBIjJGcDHe-x5e7-w6hOy3AgKxixCbGI3BDfBL61IBCfMsM5Oc0dPPOwxHvvrP-xJ9UQ2F53e1elyQLT12YteAPOaNtTolbv1qQjBC-jZquyQrMsRlF_bf--t8KFb6rFtYzMr--vFH53EWtVZqp7y81m20El84B2quyQhyVajxEWzY9Qvv1xgVcGeAx-oh6xMUdg7OFq7A4X4U_leN8cMQZFs8TnDuwirPpfDkH1wPIX-e45GvOn7DCrod8Yadl3zouJ1dO0LjzMn7ukmozAsmF4EQHVAcxi4WJaehWJZkweWTWVyLRggHig4wZniEjNZpqT4dtx1KnjKc1t8wy7xQ10nlqzxC2AAkBsSnmphFiz6rAOhs3BmwVkFBwju5rMcnqdueyAA6Cy1KqEqQqC6lKDsfXopRZyZfxx_GL_339FrW64-FADnqj10u0Q506IYzQ8Ao1louVvYb8YBnfVNfhBy-Rss4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSDwG3og3HhixSh3HddiqQtXyqBgK6hY5tqMilSRqUiH-PXdJW3VASIyRnAz38N3l7vuOkGujwIGcFszF1mNgIT4LfG5BIb4TFvJzHiDe-aUvu2_icegPl1D85bT7vCVZYRqQpSkp6pmNKxdXsp4L3pCc4SrWknCEyVWyJiC64Q6Dtmwv_rJw5WPfcI6W-fXVpR7oFtmYJpn-_tLj8VKY6eyS7Vl-SFuVQvfIikv2yc589wKdueIBeW_1GEYgS7MJ9lrw1qKfGtkfkELD0TSmOZatNBulRQqXUKE_TE4r5ub8jmqK0-QTN6om2GmFYTkkg87DoN1lsx0JLFdKMtPkphmJSNmIB7g0yQbxrXC-VrFRAmo_yJ3hGXJTa7jxTNBAvjptPWOkE054R6SWpIk7JtRBcQi1mxaIS4g8p5sOvd1a8FqoiZon5GYupnBm53lYlhBKhpVUQ5BqWEo1lHB8Icowq5gz_jh--r-vX5H11_tO-NzrP52RTY7ahHjCg3NSKyZTdwGJQhFdlrbwA7fotas
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA66PYgP_kBFRSUPPprp0jRNfRvimILDh03mU0mTlImzLWuH6F_vXVtliIg-Fq4QLneX-7i77wg5NQocyGnBXGI9Bhbis9DnFi7Ed8JCfs5DnHe-G8rBWNxO_ElDk4OzMMv1-66S54XgXckZLl2tqEWYXCVt6UPe3SLt8fC-94jb43zAQCoU_HMq5scfl2qd62Rtkeb67VXPZkvPSX-z3ktUVCyE2EXy3FmUcce8f-No_NtJt8hGk1XSXm0G22TFpTvkoXfD8JGyNJ9jOQYDG33RSBCBLBuOZgktENnSfJqVGcSpUj-ZgtbkzsUl1RQbzuduWje503rMZZeM-tejqwFr1iiwQinJTMBNEItY2ZiHuFfJhsmFcL5WiVEC4CGk1_AN6as13Hgm7CKlnbaeMdIJJ7w90kqz1O0T6gA_ArzTAkcXYs_pwGFAsBYcG2BTcEDOPjUcNa5QRBXKUDKq9ROBfqJKP5EE8a9biPKaXOMX8cP_iR-RVjlfuGPIGcr4pDGWDzR6ueA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-based+predictive+maintenance+of+solar+photovoltaics+systems%3A+a+comprehensive+review&rft.jtitle=Energy+Informatics&rft.au=Vichare%2C+Rohan+Vijay&rft.au=Gaikwad%2C+Sachin+Ramnath&rft.date=2025-10-29&rft.pub=Springer+International+Publishing&rft.eissn=2520-8942&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs42162-025-00594-6&rft.externalDocID=10_1186_s42162_025_00594_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8942&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8942&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8942&client=summon