Annotating Proteins with Incomplete Label Information

This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for network‐based protein function prediction and weak‐label learning approaches. The chapter then introduces protein function prediction using dependency m...

Full description

Saved in:
Bibliographic Details
Published inPattern Recognition in Computational Molecular Biology pp. 585 - 608
Main Authors Yu, Guoxian, Rangwala, Huzefa, Domeniconi, Carlotta
Format Book Chapter
LanguageEnglish
Published Hoboken, NJ, USA John Wiley & Sons, Inc 19.11.2015
Subjects
Online AccessGet full text
ISBN9781118893685
1118893689
DOI10.1002/9781119078845.ch29

Cover

Abstract This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for network‐based protein function prediction and weak‐label learning approaches. The chapter then introduces protein function prediction using dependency maximization (ProDM) and details the experimental setup. It investigates the performance of ProDM on replenishing missing functions and predicting protein functions on three different protein‐protein interaction (PPI) benchmarks. The first data set, Saccharomyces cerevisiae PPIs (ScPPI), is extracted from BioGrid. The second data set, KroganPPI, is obtained from the study of Krogan et al. The third data set, HumanPPI is obtained from the study of Mostafavi and Morris. The experimental results demonstrate the benefit of integrating the guilt by association rule, function correlations, and dependency maximization in protein function prediction. In future work, it is planned to incorporate more background information of proteomic data and hierarchical structure among function labels for protein function prediction.
AbstractList This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for network‐based protein function prediction and weak‐label learning approaches. The chapter then introduces protein function prediction using dependency maximization (ProDM) and details the experimental setup. It investigates the performance of ProDM on replenishing missing functions and predicting protein functions on three different protein‐protein interaction (PPI) benchmarks. The first data set, Saccharomyces cerevisiae PPIs (ScPPI), is extracted from BioGrid. The second data set, KroganPPI, is obtained from the study of Krogan et al. The third data set, HumanPPI is obtained from the study of Mostafavi and Morris. The experimental results demonstrate the benefit of integrating the guilt by association rule, function correlations, and dependency maximization in protein function prediction. In future work, it is planned to incorporate more background information of proteomic data and hierarchical structure among function labels for protein function prediction.
Author Rangwala, Huzefa
Domeniconi, Carlotta
Yu, Guoxian
Author_xml – sequence: 1
  givenname: Guoxian
  surname: Yu
  fullname: Yu, Guoxian
  organization: College of Computer and Information Science, Southwest University, Chongqing, China
– sequence: 2
  givenname: Huzefa
  surname: Rangwala
  fullname: Rangwala, Huzefa
  organization: Department of Computer Science, George Mason University, Fairfax, VA, USA
– sequence: 3
  givenname: Carlotta
  surname: Domeniconi
  fullname: Domeniconi, Carlotta
  organization: Department of Computer Science, George Mason University, Fairfax, VA, USA
BookMark eNpVj8tKAzEYhSMqqHVewNW8wNT8yeS2LEVtYUAXuh5y-ccOThNpAsW3t_Wy6OYczuFw4LshFzFFJOQO6BwoZfdGaQAwVGndirnfMHNGqpPy_D9rbbjU4opUOY-OMgkMdAvXRCxiTMWWMb7XL7tUcIy53o9lU6-jT9vPCQvWnXU4HYoh7baHaYq35HKwU8bqz2fk7fHhdblquuen9XLRNRmMMQ0yZ702ygshrHJcBjTUCaMow0F5KgMFJURgwVPRSgut4YN0LAjucQiBzwj__d2PE3716FL6yD3Q_sjfn6D2R_4f4d93WVAk
ContentType Book Chapter
Copyright Copyright © 2016 John Wiley & Sons, Inc
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Inc
DOI 10.1002/9781119078845.ch29
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 9781119078845
1119078849
Editor Wang, Jason T. L
Elloumi, Mourad
Iliopoulos, Costas S
Zomaya, Albert Y
Editor_xml – sequence: 1
  givenname: Mourad
  surname: Elloumi
  fullname: Elloumi, Mourad
  organization: Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE), and University of Tunis‐El Manar, Tunisia
– sequence: 2
  givenname: Costas S
  surname: Iliopoulos
  fullname: Iliopoulos, Costas S
  organization: King's College London, UK
– sequence: 3
  givenname: Jason T. L
  surname: Wang
  fullname: Wang, Jason T. L
  organization: New Jersey Institute of Technology, USA
– sequence: 4
  givenname: Albert Y
  surname: Zomaya
  fullname: Zomaya, Albert Y
  organization: The University of Sydney, Australia
EndPage 608
ExternalDocumentID 10.1002/9781119078845.ch29
Genre chapter
GroupedDBID 20A
38.
3XM
AAAUZ
AABBV
ABARN
ABIAV
ABQPQ
ABQPW
ABYOB
ADJGH
ADVEM
AERYV
AFOJC
AJFER
ALMA_UNASSIGNED_HOLDINGS
ASGYQ
AZZ
BBABE
FAMPF
GEOUK
IPJKO
J-X
JFSCD
KJBCJ
LMJTD
LQKAK
LWYJN
LYPXV
MEDSZ
MPPRW
MYL
OTAXI
PLCCB
PQEST
PQQKQ
PQUKI
W1A
YPLAZ
YSPEL
ZEEST
ID FETCH-LOGICAL-s1999-e2bac897c555a7b36de90b59702ef7c06d01755d2dc0546a1493f6b2d53cefdd3
ISBN 9781118893685
1118893689
IngestDate Thu Apr 21 09:51:52 EDT 2022
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1999-e2bac897c555a7b36de90b59702ef7c06d01755d2dc0546a1493f6b2d53cefdd3
PageCount 24
ParticipantIDs wiley_ebooks_10_1002_9781119078845_ch29_ch29
PublicationCentury 2000
PublicationDate 2015-11-19
PublicationDateYYYYMMDD 2015-11-19
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-19
  day: 19
PublicationDecade 2010
PublicationPlace Hoboken, NJ, USA
PublicationPlace_xml – name: Hoboken, NJ, USA
PublicationTitle Pattern Recognition in Computational Molecular Biology
PublicationYear 2015
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
SSID ssib026121841
ssib023095966
ssib026316938
ssj0001595208
ssib024155818
Score 1.4753249
Snippet This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for...
SourceID wiley
SourceType Publisher
StartPage 585
SubjectTerms multi‐label learning algorithms
partially annotated proteins
ProDM method
protein function prediction
protein‐protein interaction benchmarks
Title Annotating Proteins with Incomplete Label Information
URI https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119078845.ch29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58IIgXn_gmB2-aGpPsZvcoPihiPYiFeirZR_QgKdgUxV_vzGabhy2CXpY2hDSbbzs7M5nvG0JORMaYUsr4odKBH3Nm4D8nEl_EWRIomSiWYWqg98C6_fhuQAcNxjWySwrZUV9zeSX_QRWOAa7Ikv0DstVF4QB8BnxhBIRh_OH8ttOspeiFVcbEBLwrASqLFss2DdMUX2_a_dY1nawS6M8TmxGfjD4b6-MxzV8-0jfrT3YnXyarbPY1CjXAorENoLBK5G1UFGlzvV3m-Qh_Nn9B8gH20HTEObBAWLYOzvnpfSoNSntUjMlmzuGCIvmuYdnmFPW0KzfL6BTMKAd3iHHasJDUfSs3W2ZFHWbteKkLW14DwnfOY9pRry430tbH_u30RbKYcLB-y7DH31RZHIi6BG2EeejEUF7v0VZVjdduYsgilKzhde6OChoG3DaeclMUTj6smrIjaMGdnc_eVzsSsq7M0zpZQ3qLh7wTmN8GWTD5Jllxq2OL0BpHb4qjhzh6NY6exdFr4LhN-rc3T1dd37XW8MdWd8KEMlVcJIpSmiYyYtqIQEJwGYQmS1TANFhqSnWoFfj0LIU4OsqYDDWNlMm0jnbIUj7KzS7xtIyUjCMUFdLg7iXcCI4ilzzNNMTWbI-c2bkO7dv_8bDUyQ6HracyxKdih_2_nX5AVusFekiWiveJOQI3sZDHDvVv27VYjA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition+in+Computational+Molecular+Biology&rft.au=Yu%2C+Guoxian&rft.au=Rangwala%2C+Huzefa&rft.au=Domeniconi%2C+Carlotta&rft.atitle=Annotating+Proteins+with+Incomplete+Label+Information&rft.date=2015-11-19&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781118893685&rft.spage=585&rft.epage=608&rft_id=info:doi/10.1002%2F9781119078845.ch29&rft.externalDocID=10.1002%2F9781119078845.ch29
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118893685/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118893685/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118893685/sc.gif&client=summon&freeimage=true