Annotating Proteins with Incomplete Label Information
This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for network‐based protein function prediction and weak‐label learning approaches. The chapter then introduces protein function prediction using dependency m...
        Saved in:
      
    
          | Published in | Pattern Recognition in Computational Molecular Biology pp. 585 - 608 | 
|---|---|
| Main Authors | , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Hoboken, NJ, USA
          John Wiley & Sons, Inc
    
        19.11.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781118893685 1118893689  | 
| DOI | 10.1002/9781119078845.ch29 | 
Cover
| Abstract | This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for network‐based protein function prediction and weak‐label learning approaches. The chapter then introduces protein function prediction using dependency maximization (ProDM) and details the experimental setup. It investigates the performance of ProDM on replenishing missing functions and predicting protein functions on three different protein‐protein interaction (PPI) benchmarks. The first data set, Saccharomyces cerevisiae PPIs (ScPPI), is extracted from BioGrid. The second data set, KroganPPI, is obtained from the study of Krogan et al. The third data set, HumanPPI is obtained from the study of Mostafavi and Morris. The experimental results demonstrate the benefit of integrating the guilt by association rule, function correlations, and dependency maximization in protein function prediction. In future work, it is planned to incorporate more background information of proteomic data and hierarchical structure among function labels for protein function prediction. | 
    
|---|---|
| AbstractList | This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for network‐based protein function prediction and weak‐label learning approaches. The chapter then introduces protein function prediction using dependency maximization (ProDM) and details the experimental setup. It investigates the performance of ProDM on replenishing missing functions and predicting protein functions on three different protein‐protein interaction (PPI) benchmarks. The first data set, Saccharomyces cerevisiae PPIs (ScPPI), is extracted from BioGrid. The second data set, KroganPPI, is obtained from the study of Krogan et al. The third data set, HumanPPI is obtained from the study of Mostafavi and Morris. The experimental results demonstrate the benefit of integrating the guilt by association rule, function correlations, and dependency maximization in protein function prediction. In future work, it is planned to incorporate more background information of proteomic data and hierarchical structure among function labels for protein function prediction. | 
    
| Author | Rangwala, Huzefa Domeniconi, Carlotta Yu, Guoxian  | 
    
| Author_xml | – sequence: 1 givenname: Guoxian surname: Yu fullname: Yu, Guoxian organization: College of Computer and Information Science, Southwest University, Chongqing, China – sequence: 2 givenname: Huzefa surname: Rangwala fullname: Rangwala, Huzefa organization: Department of Computer Science, George Mason University, Fairfax, VA, USA – sequence: 3 givenname: Carlotta surname: Domeniconi fullname: Domeniconi, Carlotta organization: Department of Computer Science, George Mason University, Fairfax, VA, USA  | 
    
| BookMark | eNpVj8tKAzEYhSMqqHVewNW8wNT8yeS2LEVtYUAXuh5y-ccOThNpAsW3t_Wy6OYczuFw4LshFzFFJOQO6BwoZfdGaQAwVGndirnfMHNGqpPy_D9rbbjU4opUOY-OMgkMdAvXRCxiTMWWMb7XL7tUcIy53o9lU6-jT9vPCQvWnXU4HYoh7baHaYq35HKwU8bqz2fk7fHhdblquuen9XLRNRmMMQ0yZ702ygshrHJcBjTUCaMow0F5KgMFJURgwVPRSgut4YN0LAjucQiBzwj__d2PE3716FL6yD3Q_sjfn6D2R_4f4d93WVAk | 
    
| ContentType | Book Chapter | 
    
| Copyright | Copyright © 2016 John Wiley & Sons, Inc | 
    
| Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Inc | 
    
| DOI | 10.1002/9781119078845.ch29 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISBN | 9781119078845 1119078849  | 
    
| Editor | Wang, Jason T. L Elloumi, Mourad Iliopoulos, Costas S Zomaya, Albert Y  | 
    
| Editor_xml | – sequence: 1 givenname: Mourad surname: Elloumi fullname: Elloumi, Mourad organization: Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE), and University of Tunis‐El Manar, Tunisia – sequence: 2 givenname: Costas S surname: Iliopoulos fullname: Iliopoulos, Costas S organization: King's College London, UK – sequence: 3 givenname: Jason T. L surname: Wang fullname: Wang, Jason T. L organization: New Jersey Institute of Technology, USA – sequence: 4 givenname: Albert Y surname: Zomaya fullname: Zomaya, Albert Y organization: The University of Sydney, Australia  | 
    
| EndPage | 608 | 
    
| ExternalDocumentID | 10.1002/9781119078845.ch29 | 
    
| Genre | chapter | 
    
| GroupedDBID | 20A 38. 3XM AAAUZ AABBV ABARN ABIAV ABQPQ ABQPW ABYOB ADJGH ADVEM AERYV AFOJC AJFER ALMA_UNASSIGNED_HOLDINGS ASGYQ AZZ BBABE FAMPF GEOUK IPJKO J-X JFSCD KJBCJ LMJTD LQKAK LWYJN LYPXV MEDSZ MPPRW MYL OTAXI PLCCB PQEST PQQKQ PQUKI W1A YPLAZ YSPEL ZEEST  | 
    
| ID | FETCH-LOGICAL-s1999-e2bac897c555a7b36de90b59702ef7c06d01755d2dc0546a1493f6b2d53cefdd3 | 
    
| ISBN | 9781118893685 1118893689  | 
    
| IngestDate | Thu Apr 21 09:51:52 EDT 2022 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1999-e2bac897c555a7b36de90b59702ef7c06d01755d2dc0546a1493f6b2d53cefdd3 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | wiley_ebooks_10_1002_9781119078845_ch29_ch29 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-11-19 | 
    
| PublicationDateYYYYMMDD | 2015-11-19 | 
    
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-19 day: 19  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Hoboken, NJ, USA | 
    
| PublicationPlace_xml | – name: Hoboken, NJ, USA | 
    
| PublicationTitle | Pattern Recognition in Computational Molecular Biology | 
    
| PublicationYear | 2015 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| SSID | ssib026121841 ssib023095966 ssib026316938 ssj0001595208 ssib024155818  | 
    
| Score | 1.4753249 | 
    
| Snippet | This chapter studies protein function prediction using partially annotated proteins. It reviews related work on multi‐label learning algorithms for... | 
    
| SourceID | wiley | 
    
| SourceType | Publisher | 
    
| StartPage | 585 | 
    
| SubjectTerms | multi‐label learning algorithms partially annotated proteins ProDM method protein function prediction protein‐protein interaction benchmarks  | 
    
| Title | Annotating Proteins with Incomplete Label Information | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119078845.ch29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58IIgXn_gmB2-aGpPsZvcoPihiPYiFeirZR_QgKdgUxV_vzGabhy2CXpY2hDSbbzs7M5nvG0JORMaYUsr4odKBH3Nm4D8nEl_EWRIomSiWYWqg98C6_fhuQAcNxjWySwrZUV9zeSX_QRWOAa7Ikv0DstVF4QB8BnxhBIRh_OH8ttOspeiFVcbEBLwrASqLFss2DdMUX2_a_dY1nawS6M8TmxGfjD4b6-MxzV8-0jfrT3YnXyarbPY1CjXAorENoLBK5G1UFGlzvV3m-Qh_Nn9B8gH20HTEObBAWLYOzvnpfSoNSntUjMlmzuGCIvmuYdnmFPW0KzfL6BTMKAd3iHHasJDUfSs3W2ZFHWbteKkLW14DwnfOY9pRry430tbH_u30RbKYcLB-y7DH31RZHIi6BG2EeejEUF7v0VZVjdduYsgilKzhde6OChoG3DaeclMUTj6smrIjaMGdnc_eVzsSsq7M0zpZQ3qLh7wTmN8GWTD5Jllxq2OL0BpHb4qjhzh6NY6exdFr4LhN-rc3T1dd37XW8MdWd8KEMlVcJIpSmiYyYtqIQEJwGYQmS1TANFhqSnWoFfj0LIU4OsqYDDWNlMm0jnbIUj7KzS7xtIyUjCMUFdLg7iXcCI4ilzzNNMTWbI-c2bkO7dv_8bDUyQ6HracyxKdih_2_nX5AVusFekiWiveJOQI3sZDHDvVv27VYjA | 
    
| linkProvider | ProQuest Ebooks | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition+in+Computational+Molecular+Biology&rft.au=Yu%2C+Guoxian&rft.au=Rangwala%2C+Huzefa&rft.au=Domeniconi%2C+Carlotta&rft.atitle=Annotating+Proteins+with+Incomplete+Label+Information&rft.date=2015-11-19&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781118893685&rft.spage=585&rft.epage=608&rft_id=info:doi/10.1002%2F9781119078845.ch29&rft.externalDocID=10.1002%2F9781119078845.ch29 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118893685/lc.gif&client=summon&freeimage=true | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118893685/mc.gif&client=summon&freeimage=true | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118893685/sc.gif&client=summon&freeimage=true |