Evolving Coverage Optimisation Functions for Heterogeneous Networks Using Grammatical Genetic Programming
Heterogeneous Cellular Networks are multi-tiered cellular networks comprised of Macro Cells and Small Cells in which all cells occupy the same bandwidth. User Equipments greedily attach to whichever cell provides the best signal strength. While Macro Cells are invariant, the power and selection bias...
Saved in:
| Published in | Applications of Evolutionary Computation pp. 219 - 234 |
|---|---|
| Main Authors | , , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Cham
Springer International Publishing
2016
|
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319312030 9783319312033 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-31204-0_15 |
Cover
| Abstract | Heterogeneous Cellular Networks are multi-tiered cellular networks comprised of Macro Cells and Small Cells in which all cells occupy the same bandwidth. User Equipments greedily attach to whichever cell provides the best signal strength. While Macro Cells are invariant, the power and selection bias for each Small Cell can be increased or decreased (subject to pre-defined limits) such that more or fewer UEs attach to that cell. Setting optimal power and selection bias levels for Small Cells is key for good network performance. The application of Genetic Programming techniques has been proven to produce good results in the control of Heterogenous Networks. Expanding on previous works, this paper uses grammatical GP to evolve distributed control functions for Small Cells in order to vary their power and bias settings. The objective of these control functions is to evolve control functions that maximise a proportional fair utility of UE throughputs. |
|---|---|
| AbstractList | Heterogeneous Cellular Networks are multi-tiered cellular networks comprised of Macro Cells and Small Cells in which all cells occupy the same bandwidth. User Equipments greedily attach to whichever cell provides the best signal strength. While Macro Cells are invariant, the power and selection bias for each Small Cell can be increased or decreased (subject to pre-defined limits) such that more or fewer UEs attach to that cell. Setting optimal power and selection bias levels for Small Cells is key for good network performance. The application of Genetic Programming techniques has been proven to produce good results in the control of Heterogenous Networks. Expanding on previous works, this paper uses grammatical GP to evolve distributed control functions for Small Cells in order to vary their power and bias settings. The objective of these control functions is to evolve control functions that maximise a proportional fair utility of UE throughputs. |
| Author | O’Neill, Michael Claussen, Holger Fenton, Michael Kucera, Stepan Lynch, David |
| Author_xml | – sequence: 1 givenname: Michael surname: Fenton fullname: Fenton, Michael email: michaelfenton1@gmail.com organization: Natural Computing Research and Applications Group, UCD, Dublin, Ireland – sequence: 2 givenname: David surname: Lynch fullname: Lynch, David organization: Natural Computing Research and Applications Group, UCD, Dublin, Ireland – sequence: 3 givenname: Stepan surname: Kucera fullname: Kucera, Stepan organization: Bell Laboratories, Alcatel-Lucent, Dublin, Ireland – sequence: 4 givenname: Holger surname: Claussen fullname: Claussen, Holger organization: Bell Laboratories, Alcatel-Lucent, Dublin, Ireland – sequence: 5 givenname: Michael surname: O’Neill fullname: O’Neill, Michael organization: Natural Computing Research and Applications Group, UCD, Dublin, Ireland |
| BookMark | eNpFkMtOAjEUhqtiIqBv4KIvUO1t7HRpCBcTIi5k3bTMGTICU9IO-PqeQRMX55L_P5fkG5FBG1sg5FHwJ8G5ebamZIopYTEk14w7UVyRkULlIthrMhQvQjCltL35NxQfkCFmyazR6o6Mcv7inEtj5ZA003Pcn5t2SyfxDMlvga6OXXNosu-a2NLZqd30TaZ1THQBHaS4hRbiKdN36L5j2mW6zv2BefKHA25t_J7OcQQ7-oHTvYz-Pbmt_T7Dw18dk_Vs-jlZsOVq_jZ5XbIsbNmxWlYhWFlUwUBdWs7BKGG00JWQYLSGolaVFYWvtbUQ5EbyUoTgbc3LokJzTOTv3XxM-BaSCzHushPICzE6xOiUQzbuQs31GNUPr01log |
| ContentType | Book Chapter |
| Copyright | Springer International Publishing Switzerland 2016 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2016 |
| DOI | 10.1007/978-3-319-31204-0_15 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 3319312049 9783319312040 |
| EISSN | 1611-3349 |
| Editor | Burelli, Paolo Squillero, Giovanni |
| Editor_xml | – sequence: 1 givenname: Giovanni surname: Squillero fullname: Squillero, Giovanni email: giovanni.squillero@polito.it – sequence: 2 givenname: Paolo surname: Burelli fullname: Burelli, Paolo email: pabu@create.aau.dk |
| EndPage | 234 |
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
| ID | FETCH-LOGICAL-s198t-f2dbb925db7ef8900e7317414d12e744e5f3d915af499eb2c2081bba9f085d5f3 |
| ISBN | 3319312030 9783319312033 |
| ISSN | 0302-9743 |
| IngestDate | Wed Sep 17 03:01:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s198t-f2dbb925db7ef8900e7317414d12e744e5f3d915af499eb2c2081bba9f085d5f3 |
| PageCount | 16 |
| ParticipantIDs | springer_books_10_1007_978_3_319_31204_0_15 |
| PublicationCentury | 2000 |
| PublicationDate | 2016 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – year: 2016 text: 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30 -- April 1, 2016, Proceedings, Part I |
| PublicationTitle | Applications of Evolutionary Computation |
| PublicationYear | 2016 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zürich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology Madr, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatic, Saarbrücken, Germany |
| SSID | ssj0002792 ssj0001657029 |
| Score | 1.813421 |
| Snippet | Heterogeneous Cellular Networks are multi-tiered cellular networks comprised of Macro Cells and Small Cells in which all cells occupy the same bandwidth. User... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 219 |
| SubjectTerms | Coverage Optimisation Grammatical Evolution Macro Cell Symbolic Regression User Equipment |
| Title | Evolving Coverage Optimisation Functions for Heterogeneous Networks Using Grammatical Genetic Programming |
| URI | http://link.springer.com/10.1007/978-3-319-31204-0_15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECUcdyk69BtNv8Chm6FCoqRYGjoUQVIjSN0OSZFNECmyKBDbQCQHaH9cflveiWREO17ShTAow6SOz8fj3bsjY58ShU0Neo7CjQ2FGdOoMGhyI2RsGp3nhvyQ3-cHs_Ps5CK_GI1uAtbSupOf1b-deSX_s6row7pSluwDVvbuR9GBz1hftFhhtFvG76ab1dKLg9Bzzw-8dmMRD85e1rARZcfMd1DliYvzd2nvgwr47RTbUbq_g6gngg0YOrys161z28xWl789u9c59zGJa0slgDSJD_QDOmnhOEOTY-yidsLEbpwRFWeFF9TEw51bQno7sSyGb1f1oi8nCwxRbWwqLPvTkskWfrslIev2y6mLg8xXXU8vm_irKrzmCl0bybZrw7s2t5yjg39u4yycQpmkiYhtXQ2fEwZ9jxOT7dJWxR9Q4cbUFkrdUtvWAhDWvXpvcwn5JJT7RaNlEQ5R-R7bwwTG7NHXo5PTX4OPj3hFZH46y4CKNdqolp0V5Rr5Wbv6Y8NbBHmeu4a8F7nvDaKzZ-wJJclwyl6B0J6zkV6-YE-93LmT-0v2xwOCe0DwEBD8DhAcgOAbgOAeELwHBA8AwR0geACIV-z8-OjscBa52z2iNimLLjKikbIUOdX3NkUZx3oKWzZLsiYRepplOjdpUyZ5bXAo11IoAetVyro0OCU0ePiajZerpX7DuDI6K5RKYNxKHAiUjKdNqlWqy6ksRC322cTLqqL_a1v5Yt2QbJVWkGzVS7Yiyb590LffsccDdN-zcXe11h9gp3byo4PDLQyAkO8 |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Applications+of+Evolutionary+Computation&rft.au=Fenton%2C+Michael&rft.au=Lynch%2C+David&rft.au=Kucera%2C+Stepan&rft.au=Claussen%2C+Holger&rft.atitle=Evolving+Coverage+Optimisation+Functions+for+Heterogeneous+Networks+Using+Grammatical+Genetic+Programming&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2016-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319312033&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=219&rft.epage=234&rft_id=info:doi/10.1007%2F978-3-319-31204-0_15 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |