On the Model Checking of the Graded $$\mu $$ -calculus on Trees

The $$\mu $$ -calculus is an expressive propositional modal logic augmented with least and greatest fixed-points, and encompasses many temporal, program, dynamic and description logics. The model checking problem for the $$\mu $$ -calculus is known to be in NP $$\cap $$ Co-NP. In this paper, we stud...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Intelligence and Soft Computing pp. 178 - 189
Main Authors Bárcenas, Everardo, Benítez-Guerrero, Edgard, Lavalle, Jesús
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319270593
3319270591
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-27060-9_14

Cover

More Information
Summary:The $$\mu $$ -calculus is an expressive propositional modal logic augmented with least and greatest fixed-points, and encompasses many temporal, program, dynamic and description logics. The model checking problem for the $$\mu $$ -calculus is known to be in NP $$\cap $$ Co-NP. In this paper, we study the model checking problem for the $$\mu $$ -calculus extended with graded modalities. These constructors allow to express numerical constraints on the occurrence of accessible nodes (worlds) satisfying a certain formula. It is known that the model checking problem for the graded $$\mu $$ -calculus with finite models is in EXPTIME. In the current work, we introduce a linear-time model checking algorithm for the graded $$\mu $$ -calculus when models are finite unranked trees.
Bibliography:Original Title: On the Model Checking of the Graded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus on Trees
Original Abstract: The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus is an expressive propositional modal logic augmented with least and greatest fixed-points, and encompasses many temporal, program, dynamic and description logics. The model checking problem for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus is known to be in NP \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap $$\end{document} Co-NP. In this paper, we study the model checking problem for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus extended with graded modalities. These constructors allow to express numerical constraints on the occurrence of accessible nodes (worlds) satisfying a certain formula. It is known that the model checking problem for the graded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus with finite models is in EXPTIME. In the current work, we introduce a linear-time model checking algorithm for the graded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus when models are finite unranked trees.
ISBN:9783319270593
3319270591
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-27060-9_14