On the Model Checking of the Graded $$\mu $$ -calculus on Trees
The $$\mu $$ -calculus is an expressive propositional modal logic augmented with least and greatest fixed-points, and encompasses many temporal, program, dynamic and description logics. The model checking problem for the $$\mu $$ -calculus is known to be in NP $$\cap $$ Co-NP. In this paper, we stud...
        Saved in:
      
    
          | Published in | Advances in Artificial Intelligence and Soft Computing pp. 178 - 189 | 
|---|---|
| Main Authors | , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        2015
     | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783319270593 3319270591  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-319-27060-9_14 | 
Cover
| Summary: | The $$\mu $$ -calculus is an expressive propositional modal logic augmented with least and greatest fixed-points, and encompasses many temporal, program, dynamic and description logics. The model checking problem for the $$\mu $$ -calculus is known to be in NP $$\cap $$ Co-NP. In this paper, we study the model checking problem for the $$\mu $$ -calculus extended with graded modalities. These constructors allow to express numerical constraints on the occurrence of accessible nodes (worlds) satisfying a certain formula. It is known that the model checking problem for the graded $$\mu $$ -calculus with finite models is in EXPTIME. In the current work, we introduce a linear-time model checking algorithm for the graded $$\mu $$ -calculus when models are finite unranked trees. | 
|---|---|
| Bibliography: | Original Title: On the Model Checking of the Graded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus on Trees Original Abstract: The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus is an expressive propositional modal logic augmented with least and greatest fixed-points, and encompasses many temporal, program, dynamic and description logics. The model checking problem for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus is known to be in NP \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap $$\end{document} Co-NP. In this paper, we study the model checking problem for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus extended with graded modalities. These constructors allow to express numerical constraints on the occurrence of accessible nodes (worlds) satisfying a certain formula. It is known that the model checking problem for the graded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus with finite models is in EXPTIME. In the current work, we introduce a linear-time model checking algorithm for the graded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-calculus when models are finite unranked trees.  | 
| ISBN: | 9783319270593 3319270591  | 
| ISSN: | 0302-9743 1611-3349  | 
| DOI: | 10.1007/978-3-319-27060-9_14 |