Intra-patient Arrhythmia Heartbeat Modeling by Gibbs Sampling

Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models (GMMs) and other statistical classifiers by extracting the fiducial points provided by the MIT-BIH database. In this work, MIT-BIH database h...

Full description

Saved in:
Bibliographic Details
Published inPattern Recognition pp. 195 - 205
Main Authors Ramírez-Robles, Ethery, Jara-Maldonado, Miguel Angel, Etcheverry, Gibran
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2019
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030210762
3030210766
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-21077-9_18

Cover

Abstract Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models (GMMs) and other statistical classifiers by extracting the fiducial points provided by the MIT-BIH database. In this work, MIT-BIH database heartbeats are modeled into different heartbeat types from a single subject by using the Gibbs Sampling (GS) algorithm. Firstly, a data pre-processing step is performed; this step involves several tasks such as filtering the raw signals from the MIT-BIH database and reducing the heartbeat types to five. Secondly, the GS is applied to the resulting signals of one subject. Thirdly, the Euclidean distance between each heartbeat type is calculated, and lastly, the Bhattacharyya distance is used to classify heartbeats. The results obtained by the GS algorithm were also compared to results obtained by applying the Expectation Maximization (EM) algorithm to the same data-set. Results allow to conclude that GS is a proper solution for separating each heartbeat type; by providing a significant difference between each heartbeat type which can be used for classification.
AbstractList Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models (GMMs) and other statistical classifiers by extracting the fiducial points provided by the MIT-BIH database. In this work, MIT-BIH database heartbeats are modeled into different heartbeat types from a single subject by using the Gibbs Sampling (GS) algorithm. Firstly, a data pre-processing step is performed; this step involves several tasks such as filtering the raw signals from the MIT-BIH database and reducing the heartbeat types to five. Secondly, the GS is applied to the resulting signals of one subject. Thirdly, the Euclidean distance between each heartbeat type is calculated, and lastly, the Bhattacharyya distance is used to classify heartbeats. The results obtained by the GS algorithm were also compared to results obtained by applying the Expectation Maximization (EM) algorithm to the same data-set. Results allow to conclude that GS is a proper solution for separating each heartbeat type; by providing a significant difference between each heartbeat type which can be used for classification.
Author Ramírez-Robles, Ethery
Etcheverry, Gibran
Jara-Maldonado, Miguel Angel
Author_xml – sequence: 1
  givenname: Ethery
  surname: Ramírez-Robles
  fullname: Ramírez-Robles, Ethery
– sequence: 2
  givenname: Miguel Angel
  surname: Jara-Maldonado
  fullname: Jara-Maldonado, Miguel Angel
– sequence: 3
  givenname: Gibran
  surname: Etcheverry
  fullname: Etcheverry, Gibran
  email: gibran.etcheverry@udlap.mx
BookMark eNo1kMFOAjEQhqtiIiBv4GFfoDrTlm178ECIAgnGg3pu2t1WVmGXbHvh7e2inmbyzWTm__8JGbVd6wm5Q7hHAPmgpaKcAgfKEKSk2qC6IBOeyRmISzLGEpFyLvQVmeX9_1nJRmQ89FRLwW_ILMYvAGAMNHI9Jo-bNvWWHm1qfJuKRd_vTml3aGyx9rZPzttUvHS13zftZ-FOxapxLhZv9nAcyC25DnYf_eyvTsnH89P7ck23r6vNcrGlEbVKVJVOyVoKAUx5cLIqWVBQs7JCzti8ElkpCyhBCF-x0mPwQbna16oO85CFTgn7vRuPfX7re-O67jsaBDMEZLJhw022ac55mCEg_gN22lT2
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DOI 10.1007/978-3-030-21077-9_18
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3030210774
9783030210779
EISSN 1611-3349
Editor Martínez-Trinidad, José Francisco
Carrasco-Ochoa, Jesús Ariel
Olvera-López, José Arturo
Salas, Joaquín
Editor_xml – sequence: 1
  givenname: Jesús Ariel
  surname: Carrasco-Ochoa
  fullname: Carrasco-Ochoa, Jesús Ariel
  email: ariel@inaoep.mx
– sequence: 2
  givenname: José Francisco
  surname: Martínez-Trinidad
  fullname: Martínez-Trinidad, José Francisco
  email: fmartine@inaoep.mx
– sequence: 3
  givenname: José Arturo
  orcidid: 0000-0003-0639-1463
  surname: Olvera-López
  fullname: Olvera-López, José Arturo
  email: aolveral@gmail.com
– sequence: 4
  givenname: Joaquín
  surname: Salas
  fullname: Salas, Joaquín
  email: salas@ieee.org
EndPage 205
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s198t-86b87d744028e0b7c62f80d26c13225c42102f17044ec26e1fef8bded8df5f913
ISBN 9783030210762
3030210766
ISSN 0302-9743
IngestDate Wed Sep 17 04:02:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s198t-86b87d744028e0b7c62f80d26c13225c42102f17044ec26e1fef8bded8df5f913
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_030_21077_9_18
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 11th Mexican Conference, MCPR 2019, Querétaro, Mexico, June 26–29, 2019, Proceedings
PublicationTitle Pattern Recognition
PublicationYear 2019
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Hartmanis, Juris
Mattern, Friedemann
Goos, Gerhard
Steffen, Bernhard
Kittler, Josef
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 13
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
SSID ssj0002209139
ssj0002792
Score 1.8975415
Snippet Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models...
SourceID springer
SourceType Publisher
StartPage 195
SubjectTerms Arrhythmia
Electrocardiogram
Expectation Maximization
Gibbs Sampling algorithm
QRS complex
R programming
Title Intra-patient Arrhythmia Heartbeat Modeling by Gibbs Sampling
URI http://link.springer.com/10.1007/978-3-030-21077-9_18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QIcgAKivLQHbtEie22v1wcOFRRK1fZQWtSb5X2YItFEcpxDe-WPM7OP2Gl7KRcrshJ7PZ8zOzsz37eEfDDK6LZQCeNKWZYjt6fSPGXWGCWNEblOkO98dCz2z_KD8-J8Mvk76lpa9eqjvr6TV_I_qMI5wBVZsvdAdn1ROAGfAV84AsJwvBH8bqZZveiFU8bEBHxoARoK6ieAMhbAv3T2mp3gjjGedIDB3tAz03QNO2r-GIjFzcK30P9aWUAs9rm6SBtRBcP4avs3XFzPx6_Zd0wOs6DOOtvtuour_uLyt-M3db3C_ANut-ZI7xDpwgXUcvajwT72MGeipezy02EoZhwvetcjNov7TUT3M85PICVqIz8R85M3MpxDkm1jQQsTKi5Co4cOxC5w2rDs8X7Qej8tUH0x82qnwfemfrfOMI1zx-a-PUOMm0LgygzvVrKqTuUW2YIBTMmD3b2Dw5_rRB3nQTo1TO-ouOhLU35USBiKoxZe0ml4ihFZ865b3iq_u6jm9Cl5jEwXihQUMNozMrHzbfIk2p0Gu2-TRyPRyudkE3I6QE7XkNMIOVVX1EFOI-QvyNnXvdPP-yxswsGWaSV7JoWSpUEZSS5tokoteCsTw4XGPEahc8wZtGmZ5LnVXNi0ta1Uxhpp2qIFy70k0_libl8RqhvTZFkDPyttXmRa2aSsrBGVKlFVMN8hs2iNGv9WyzpqaoPt6qwG29XOdjXa7vW9vv2GPBxezrdk2ncr-w7CyV69D4D_A5jIbLk
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition&rft.au=Ram%C3%ADrez-Robles%2C+Ethery&rft.au=Jara-Maldonado%2C+Miguel+Angel&rft.au=Etcheverry%2C+Gibran&rft.atitle=Intra-patient+Arrhythmia+Heartbeat+Modeling+by+Gibbs+Sampling&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030210762&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=195&rft.epage=205&rft_id=info:doi/10.1007%2F978-3-030-21077-9_18
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon