Intra-patient Arrhythmia Heartbeat Modeling by Gibbs Sampling
Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models (GMMs) and other statistical classifiers by extracting the fiducial points provided by the MIT-BIH database. In this work, MIT-BIH database h...
        Saved in:
      
    
          | Published in | Pattern Recognition pp. 195 - 205 | 
|---|---|
| Main Authors | , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        2019
     | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783030210762 3030210766  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-030-21077-9_18 | 
Cover
| Abstract | Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models (GMMs) and other statistical classifiers by extracting the fiducial points provided by the MIT-BIH database. In this work, MIT-BIH database heartbeats are modeled into different heartbeat types from a single subject by using the Gibbs Sampling (GS) algorithm. Firstly, a data pre-processing step is performed; this step involves several tasks such as filtering the raw signals from the MIT-BIH database and reducing the heartbeat types to five. Secondly, the GS is applied to the resulting signals of one subject. Thirdly, the Euclidean distance between each heartbeat type is calculated, and lastly, the Bhattacharyya distance is used to classify heartbeats. The results obtained by the GS algorithm were also compared to results obtained by applying the Expectation Maximization (EM) algorithm to the same data-set. Results allow to conclude that GS is a proper solution for separating each heartbeat type; by providing a significant difference between each heartbeat type which can be used for classification. | 
    
|---|---|
| AbstractList | Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models (GMMs) and other statistical classifiers by extracting the fiducial points provided by the MIT-BIH database. In this work, MIT-BIH database heartbeats are modeled into different heartbeat types from a single subject by using the Gibbs Sampling (GS) algorithm. Firstly, a data pre-processing step is performed; this step involves several tasks such as filtering the raw signals from the MIT-BIH database and reducing the heartbeat types to five. Secondly, the GS is applied to the resulting signals of one subject. Thirdly, the Euclidean distance between each heartbeat type is calculated, and lastly, the Bhattacharyya distance is used to classify heartbeats. The results obtained by the GS algorithm were also compared to results obtained by applying the Expectation Maximization (EM) algorithm to the same data-set. Results allow to conclude that GS is a proper solution for separating each heartbeat type; by providing a significant difference between each heartbeat type which can be used for classification. | 
    
| Author | Ramírez-Robles, Ethery Etcheverry, Gibran Jara-Maldonado, Miguel Angel  | 
    
| Author_xml | – sequence: 1 givenname: Ethery surname: Ramírez-Robles fullname: Ramírez-Robles, Ethery – sequence: 2 givenname: Miguel Angel surname: Jara-Maldonado fullname: Jara-Maldonado, Miguel Angel – sequence: 3 givenname: Gibran surname: Etcheverry fullname: Etcheverry, Gibran email: gibran.etcheverry@udlap.mx  | 
    
| BookMark | eNo1kMFOAjEQhqtiIiBv4GFfoDrTlm178ECIAgnGg3pu2t1WVmGXbHvh7e2inmbyzWTm__8JGbVd6wm5Q7hHAPmgpaKcAgfKEKSk2qC6IBOeyRmISzLGEpFyLvQVmeX9_1nJRmQ89FRLwW_ILMYvAGAMNHI9Jo-bNvWWHm1qfJuKRd_vTml3aGyx9rZPzttUvHS13zftZ-FOxapxLhZv9nAcyC25DnYf_eyvTsnH89P7ck23r6vNcrGlEbVKVJVOyVoKAUx5cLIqWVBQs7JCzti8ElkpCyhBCF-x0mPwQbna16oO85CFTgn7vRuPfX7re-O67jsaBDMEZLJhw022ac55mCEg_gN22lT2 | 
    
| ContentType | Book Chapter | 
    
| Copyright | Springer Nature Switzerland AG 2019 | 
    
| Copyright_xml | – notice: Springer Nature Switzerland AG 2019 | 
    
| DOI | 10.1007/978-3-030-21077-9_18 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISBN | 3030210774 9783030210779  | 
    
| EISSN | 1611-3349 | 
    
| Editor | Martínez-Trinidad, José Francisco Carrasco-Ochoa, Jesús Ariel Olvera-López, José Arturo Salas, Joaquín  | 
    
| Editor_xml | – sequence: 1 givenname: Jesús Ariel surname: Carrasco-Ochoa fullname: Carrasco-Ochoa, Jesús Ariel email: ariel@inaoep.mx – sequence: 2 givenname: José Francisco surname: Martínez-Trinidad fullname: Martínez-Trinidad, José Francisco email: fmartine@inaoep.mx – sequence: 3 givenname: José Arturo orcidid: 0000-0003-0639-1463 surname: Olvera-López fullname: Olvera-López, José Arturo email: aolveral@gmail.com – sequence: 4 givenname: Joaquín surname: Salas fullname: Salas, Joaquín email: salas@ieee.org  | 
    
| EndPage | 205 | 
    
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02  | 
    
| ID | FETCH-LOGICAL-s198t-86b87d744028e0b7c62f80d26c13225c42102f17044ec26e1fef8bded8df5f913 | 
    
| ISBN | 9783030210762 3030210766  | 
    
| ISSN | 0302-9743 | 
    
| IngestDate | Wed Sep 17 04:02:30 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s198t-86b87d744028e0b7c62f80d26c13225c42102f17044ec26e1fef8bded8df5f913 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | springer_books_10_1007_978_3_030_21077_9_18 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019 | 
    
| PublicationDateYYYYMMDD | 2019-01-01 | 
    
| PublicationDate_xml | – year: 2019 text: 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham | 
    
| PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics | 
    
| PublicationSeriesTitle | Lecture Notes in Computer Science | 
    
| PublicationSeriesTitleAlternate | Lect.Notes Computer | 
    
| PublicationSubtitle | 11th Mexican Conference, MCPR 2019, Querétaro, Mexico, June 26–29, 2019, Proceedings | 
    
| PublicationTitle | Pattern Recognition | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer International Publishing | 
    
| Publisher_xml | – name: Springer International Publishing | 
    
| RelatedPersons | Kleinberg, Jon M. Hartmanis, Juris Mattern, Friedemann Goos, Gerhard Steffen, Bernhard Kittler, Josef Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 13 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris  | 
    
| SSID | ssj0002209139 ssj0002792  | 
    
| Score | 1.8975415 | 
    
| Snippet | Heartbeat modeling allows to detect anomalies that reflect the functioning of the heart. Certain approaches face this problem by using Gaussian Mixture Models... | 
    
| SourceID | springer | 
    
| SourceType | Publisher | 
    
| StartPage | 195 | 
    
| SubjectTerms | Arrhythmia Electrocardiogram Expectation Maximization Gibbs Sampling algorithm QRS complex R programming  | 
    
| Title | Intra-patient Arrhythmia Heartbeat Modeling by Gibbs Sampling | 
    
| URI | http://link.springer.com/10.1007/978-3-030-21077-9_18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QIcgAKivLQHbtEie22v1wcOFRRK1fZQWtSb5X2YItFEcpxDe-WPM7OP2Gl7KRcrshJ7PZ8zOzsz37eEfDDK6LZQCeNKWZYjt6fSPGXWGCWNEblOkO98dCz2z_KD8-J8Mvk76lpa9eqjvr6TV_I_qMI5wBVZsvdAdn1ROAGfAV84AsJwvBH8bqZZveiFU8bEBHxoARoK6ieAMhbAv3T2mp3gjjGedIDB3tAz03QNO2r-GIjFzcK30P9aWUAs9rm6SBtRBcP4avs3XFzPx6_Zd0wOs6DOOtvtuour_uLyt-M3db3C_ANut-ZI7xDpwgXUcvajwT72MGeipezy02EoZhwvetcjNov7TUT3M85PICVqIz8R85M3MpxDkm1jQQsTKi5Co4cOxC5w2rDs8X7Qej8tUH0x82qnwfemfrfOMI1zx-a-PUOMm0LgygzvVrKqTuUW2YIBTMmD3b2Dw5_rRB3nQTo1TO-ouOhLU35USBiKoxZe0ml4ihFZ865b3iq_u6jm9Cl5jEwXihQUMNozMrHzbfIk2p0Gu2-TRyPRyudkE3I6QE7XkNMIOVVX1EFOI-QvyNnXvdPP-yxswsGWaSV7JoWSpUEZSS5tokoteCsTw4XGPEahc8wZtGmZ5LnVXNi0ta1Uxhpp2qIFy70k0_libl8RqhvTZFkDPyttXmRa2aSsrBGVKlFVMN8hs2iNGv9WyzpqaoPt6qwG29XOdjXa7vW9vv2GPBxezrdk2ncr-w7CyV69D4D_A5jIbLk | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition&rft.au=Ram%C3%ADrez-Robles%2C+Ethery&rft.au=Jara-Maldonado%2C+Miguel+Angel&rft.au=Etcheverry%2C+Gibran&rft.atitle=Intra-patient+Arrhythmia+Heartbeat+Modeling+by+Gibbs+Sampling&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030210762&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=195&rft.epage=205&rft_id=info:doi/10.1007%2F978-3-030-21077-9_18 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |