L1-Optimal Filtering of Markov Jump Processes. I. Exact Solution and Numerical Implementation Schemes

Part I of this research work is devoted to the development of a class of numerical solution algorithms for the filtering problem of Markov jump processes by indirect continuous-time observations corrupted by Wiener noises. The expected L 1 norm of the estimation error is chosen as an optimality crit...

Full description

Saved in:
Bibliographic Details
Published inAutomation and remote control Vol. 81; no. 11; pp. 1945 - 1962
Main Author Borisov, A. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.11.2020
Subjects
Online AccessGet full text
ISSN0005-1179
1608-3032
DOI10.1134/S0005117920110016

Cover

Abstract Part I of this research work is devoted to the development of a class of numerical solution algorithms for the filtering problem of Markov jump processes by indirect continuous-time observations corrupted by Wiener noises. The expected L 1 norm of the estimation error is chosen as an optimality criterion. The noise intensity depends on the state being estimated. The numerical solution algorithms involve not the original continuous-time observations, but the ones discretized by time. A feature of the proposed algorithms is that they take into account the probability of several jumps in the estimated state on the time interval of discretization. The main results are the statements on the accuracy of the approximate solution of the filtering problem, depending on the number of jumps taken into account for the estimated state, on the discretization step, and on the numerical integration scheme applied. These statements provide a theoretical basis for the subsequent analysis of particular numerical schemes to implement the solution of the filtering problem.
AbstractList Part I of this research work is devoted to the development of a class of numerical solution algorithms for the filtering problem of Markov jump processes by indirect continuous-time observations corrupted by Wiener noises. The expected L 1 norm of the estimation error is chosen as an optimality criterion. The noise intensity depends on the state being estimated. The numerical solution algorithms involve not the original continuous-time observations, but the ones discretized by time. A feature of the proposed algorithms is that they take into account the probability of several jumps in the estimated state on the time interval of discretization. The main results are the statements on the accuracy of the approximate solution of the filtering problem, depending on the number of jumps taken into account for the estimated state, on the discretization step, and on the numerical integration scheme applied. These statements provide a theoretical basis for the subsequent analysis of particular numerical schemes to implement the solution of the filtering problem.
Author Borisov, A. V.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Borisov
  fullname: Borisov, A. V.
  organization: Institute of Informatics Problems, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow Aviation Institute (National Research University), Moscow Center for Fundamental and Applied Mathematics, Moscow State University
BookMark eNplkMFOwzAMhiM0JLbBA3DLC3TYSdOkRzRtMDQY0uBcpWkKHW1SNS3i8WmBGxdb1mf_v_wvyMx5Zwm5Rlgh8vjmCAACUaYMEAEwOSNzTEBFHDibkfmEo4lfkEUIJ5i2GJ8Tu8fo0PZVo2u6reredpV7o76kj7r78J_0YWha-tx5Y0OwYUV3K7r50qanR18PfeUd1a6gT0MzHppRY9e0tW2s6_UPPJr3cQqX5LzUdbBXf31JXrebl_V9tD_c7da3-yhgqvookcoIk4O0XKVjiWOZCi2ZFdIwoYo8h5QzJUQhwcYoSlaYskgSlReJKjnjS8J-dUM7_WG77OSHzo2WGUI2BZX9C4p_Ay5QXIM
ContentType Journal Article
Copyright Pleiades Publishing, Inc. 2020
Copyright_xml – notice: Pleiades Publishing, Inc. 2020
DOI 10.1134/S0005117920110016
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1608-3032
EndPage 1962
ExternalDocumentID 10_1134_S0005117920110016
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_DOAJ
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MK~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
XU3
YLTOR
Z7R
Z7Z
Z83
Z88
ZMTXR
ZY4
~8M
~A9
ID FETCH-LOGICAL-s198t-678c5cb07e3897e344795a72e57c258dbb0932855d70e415f2dcfd668bd68f323
IEDL.DBID U2A
ISSN 0005-1179
IngestDate Fri Feb 21 02:33:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords local and global accuracy of approximation
stable numerical solution algorithm
Markov jump process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s198t-678c5cb07e3897e344795a72e57c258dbb0932855d70e415f2dcfd668bd68f323
PageCount 18
ParticipantIDs springer_journals_10_1134_S0005117920110016
PublicationCentury 2000
PublicationDate 20201100
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Automation and remote control
PublicationTitleAbbrev Autom Remote Control
PublicationYear 2020
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References ItoKRozovskiiBApproximation of the Kushner Equation for Nonlinear FilteringSIAM J.Control Optim.200038no.3893915175690010.1137/S0363012998344270
BäuerleNGilitschenskiIHanebeckUExact and Approximate Hidden Markov Chain Filters Based on Discrete ObservationsStatist. Risk Modeling201632no.3-415917635079781339.60040
ElliottRJAggounLMooreJBHidden Markov Models: Estimation and Control2008New YorkSpringer0819.60045
YinGZhangQLiuYDiscrete-time Approximation of Wonham FiltersJ.Control Theory Appl.2004no.211020938071260.60148
RabinerLRA Tutorial on Hidden Markov Models and Selected Applications in Speech RecognitionProc.IEEE19897725728610.1109/5.18626
CvitanićJLiptserRRozovskiiBA Filtering Approach to Tracking Volatility from Prices Observed at Random TimesAnnals Appl. Probab.200616no.316331652226007610.1214/105051606000000222
KloedenPPlatenENumerical Solution of Stochastic Differential Equations1992BerlinSpringer10.1007/978-3-662-12616-5
JamesMKrishnamurthyVLeGlandFTime Discretization of Continuous-Time Filters and Smoothers for HMM Parameter EstimationIEEE Trans. Autom. Control199642no.25936050852.62077
CappéOMoulinesERydenTInference in Hidden Markov Models2005BerlinSpringer10.1007/0-387-28982-8
BertsekasDPShreveSEStochastic Optimal Control: The Discrete-Time Case1978New YorkAcademic0471.93002Translated under the title Stokhasticheskoe optimal’noe upravlenie. Sluchai diskretnogo vremeni, Moscow: Fizmatlit, 1985.
Wonham, W.Some Applications of Stochastic Differential Equations to Optimal Nonlinear Filtering, SIAM J. Control Optim., 1964, pp.347–369.
AndersonBMooreJOptimal Filtering1979New JerseyPrentice Hill0688.93058
BorisovAVFiltering of Markov Jump Processes by Discretized ObservationsInform. Primenen.201812no.31151213869236
KushnerHJProbability Methods for Approximations in Stochastic Control and for Elliptic Equations1977New YorkAcademic0547.93076Translated under the title Veroyatnostnye metody approksimatsii v stokhasticheskikh zadachakh upravleniya i teorii ellipticheskikh uravnenii, Moscow: Fizmatlit, 1985.
PlatenEBruti-LiberatiNNumerical Solution of Stochastic Differential Equations with Jumps in Finance2010BerlinSpringer10.1007/978-3-642-13694-8
KahanerDMolerCNashSNumerical Methods and Software1989Prentice HillNew Jersey0744.65002
DraganVMorozanTStoicaAMathematical Methods in Robust Control of Discrete-Time Linear StochasticSystems2010New YorkSpringer10.1007/978-1-4419-0630-4
DraganVAberkaneSH2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{H}}}_{2}$$\end{document}-optimal Filtering for Continuous-time Periodic Linear Stochastic Systems with State-dependent NoiseSyst. Control Lett.2014no.66354210.1016/j.sysconle.2013.12.020
IsaacsonEKellerHAnalysis of Numerical Methods1994New YorkDover0168.13101
BorisovAVWonham Filtering by Observations with Multiplicative NoisesAutom. Remote Control201879no.13950376904410.1134/S0005117918010046
HuberPRobust Statistics1981New YorkWiley10.1002/0471725250Translated under the title Robastnost’ v statistike, Moscow: Mir, 1984.
BorisovAVApplication of Optimal Filtering Methods for On-Line Estimation of Queueing Network StatesAutom. Remote Control201677no.2277296365029610.1134/S0005117916020053
StoerJBulirschRIntroduction to Numerical Analysis1993New YorkSpringer10.1007/978-1-4757-2272-7
CrisanDKouritzinMXiongJNonlinear Filtering with Signal Dependent Observation NoiseElectron. J. Probab.2009no.1418631883254085110.1214/EJP.v14-687
KushnerHDupuisPNumerical Methods for Stochastic Control Problems in Continuous Time2001New YorkSpringer10.1007/978-1-4613-0007-6
TakeuchiYAkashiHLeast-squares State Estimation of Systems with State-dependent Observation NoiseAutomatica198521no.330331379306510.1016/0005-1098(85)90063-9
Malcolm, V., Elliott, R., and van der Hoek, J.On the Numerical Stability of Time-discretized State Estimation via Clark Transformations, Proc. 42nd IEEE Conf. Decis. Control, 2003, Maui, pp.1406–1412.
EphraimYMerhavNHidden Markov ProcessesIEEE Trans. Inform. Theory200248no.615181569190947210.1109/TIT.2002.1003838
Clark, J.The Design of Robust Approximations to the Stochastic Differential Equations of Nonlinear Filtering, Communication Systems and Random Process Theory, Skwirzynski, J.K., Ed., Amsterdam: Sijthoff and Noordhoff, 1978.
Borovkov, A.A.Asimptoticheskie metody v teorii massovogo obsluzhivaniya, Moscow: Fizmatlit, 1995, 2nd ed. Translated under the title Asymptotic Methods in Queuing Theory (Probability & Mathematical Statistics), New York: Wiley, 1984, 1st ed.
RLiptserSh.ShiryaevANStatistika sluchainykh protsessov19741st edMoscowNaukaTranslated under the title Statistics of Random Processes I. General Theory, New York: Springer-Verlag, 1977.
References_xml – reference: ElliottRJAggounLMooreJBHidden Markov Models: Estimation and Control2008New YorkSpringer0819.60045
– reference: KushnerHJProbability Methods for Approximations in Stochastic Control and for Elliptic Equations1977New YorkAcademic0547.93076Translated under the title Veroyatnostnye metody approksimatsii v stokhasticheskikh zadachakh upravleniya i teorii ellipticheskikh uravnenii, Moscow: Fizmatlit, 1985.
– reference: StoerJBulirschRIntroduction to Numerical Analysis1993New YorkSpringer10.1007/978-1-4757-2272-7
– reference: BorisovAVApplication of Optimal Filtering Methods for On-Line Estimation of Queueing Network StatesAutom. Remote Control201677no.2277296365029610.1134/S0005117916020053
– reference: BorisovAVFiltering of Markov Jump Processes by Discretized ObservationsInform. Primenen.201812no.31151213869236
– reference: KahanerDMolerCNashSNumerical Methods and Software1989Prentice HillNew Jersey0744.65002
– reference: ItoKRozovskiiBApproximation of the Kushner Equation for Nonlinear FilteringSIAM J.Control Optim.200038no.3893915175690010.1137/S0363012998344270
– reference: RLiptserSh.ShiryaevANStatistika sluchainykh protsessov19741st edMoscowNaukaTranslated under the title Statistics of Random Processes I. General Theory, New York: Springer-Verlag, 1977.
– reference: Malcolm, V., Elliott, R., and van der Hoek, J.On the Numerical Stability of Time-discretized State Estimation via Clark Transformations, Proc. 42nd IEEE Conf. Decis. Control, 2003, Maui, pp.1406–1412.
– reference: Borovkov, A.A.Asimptoticheskie metody v teorii massovogo obsluzhivaniya, Moscow: Fizmatlit, 1995, 2nd ed. Translated under the title Asymptotic Methods in Queuing Theory (Probability & Mathematical Statistics), New York: Wiley, 1984, 1st ed.
– reference: KloedenPPlatenENumerical Solution of Stochastic Differential Equations1992BerlinSpringer10.1007/978-3-662-12616-5
– reference: JamesMKrishnamurthyVLeGlandFTime Discretization of Continuous-Time Filters and Smoothers for HMM Parameter EstimationIEEE Trans. Autom. Control199642no.25936050852.62077
– reference: YinGZhangQLiuYDiscrete-time Approximation of Wonham FiltersJ.Control Theory Appl.2004no.211020938071260.60148
– reference: CvitanićJLiptserRRozovskiiBA Filtering Approach to Tracking Volatility from Prices Observed at Random TimesAnnals Appl. Probab.200616no.316331652226007610.1214/105051606000000222
– reference: AndersonBMooreJOptimal Filtering1979New JerseyPrentice Hill0688.93058
– reference: Wonham, W.Some Applications of Stochastic Differential Equations to Optimal Nonlinear Filtering, SIAM J. Control Optim., 1964, pp.347–369.
– reference: IsaacsonEKellerHAnalysis of Numerical Methods1994New YorkDover0168.13101
– reference: EphraimYMerhavNHidden Markov ProcessesIEEE Trans. Inform. Theory200248no.615181569190947210.1109/TIT.2002.1003838
– reference: BorisovAVWonham Filtering by Observations with Multiplicative NoisesAutom. Remote Control201879no.13950376904410.1134/S0005117918010046
– reference: HuberPRobust Statistics1981New YorkWiley10.1002/0471725250Translated under the title Robastnost’ v statistike, Moscow: Mir, 1984.
– reference: KushnerHDupuisPNumerical Methods for Stochastic Control Problems in Continuous Time2001New YorkSpringer10.1007/978-1-4613-0007-6
– reference: CrisanDKouritzinMXiongJNonlinear Filtering with Signal Dependent Observation NoiseElectron. J. Probab.2009no.1418631883254085110.1214/EJP.v14-687
– reference: DraganVAberkaneSH2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{H}}}_{2}$$\end{document}-optimal Filtering for Continuous-time Periodic Linear Stochastic Systems with State-dependent NoiseSyst. Control Lett.2014no.66354210.1016/j.sysconle.2013.12.020
– reference: PlatenEBruti-LiberatiNNumerical Solution of Stochastic Differential Equations with Jumps in Finance2010BerlinSpringer10.1007/978-3-642-13694-8
– reference: RabinerLRA Tutorial on Hidden Markov Models and Selected Applications in Speech RecognitionProc.IEEE19897725728610.1109/5.18626
– reference: BertsekasDPShreveSEStochastic Optimal Control: The Discrete-Time Case1978New YorkAcademic0471.93002Translated under the title Stokhasticheskoe optimal’noe upravlenie. Sluchai diskretnogo vremeni, Moscow: Fizmatlit, 1985.
– reference: CappéOMoulinesERydenTInference in Hidden Markov Models2005BerlinSpringer10.1007/0-387-28982-8
– reference: TakeuchiYAkashiHLeast-squares State Estimation of Systems with State-dependent Observation NoiseAutomatica198521no.330331379306510.1016/0005-1098(85)90063-9
– reference: BäuerleNGilitschenskiIHanebeckUExact and Approximate Hidden Markov Chain Filters Based on Discrete ObservationsStatist. Risk Modeling201632no.3-415917635079781339.60040
– reference: Clark, J.The Design of Robust Approximations to the Stochastic Differential Equations of Nonlinear Filtering, Communication Systems and Random Process Theory, Skwirzynski, J.K., Ed., Amsterdam: Sijthoff and Noordhoff, 1978.
– reference: DraganVMorozanTStoicaAMathematical Methods in Robust Control of Discrete-Time Linear StochasticSystems2010New YorkSpringer10.1007/978-1-4419-0630-4
SSID ssj0011023
Score 2.2114398
Snippet Part I of this research work is devoted to the development of a class of numerical solution algorithms for the filtering problem of Markov jump processes by...
SourceID springer
SourceType Publisher
StartPage 1945
SubjectTerms 639/301/1034/1035
639/925/357/995
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Computer-Aided Engineering (CAD
Control
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Robotics
Systems Theory
Topical Issue
Title L1-Optimal Filtering of Markov Jump Processes. I. Exact Solution and Numerical Implementation Schemes
URI https://link.springer.com/article/10.1134/S0005117920110016
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1608-3032
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0011023
  issn: 0005-1179
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1608-3032
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011023
  issn: 0005-1179
  databaseCode: ADMLS
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1608-3032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011023
  issn: 0005-1179
  databaseCode: AFBBN
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1608-3032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011023
  issn: 0005-1179
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1608-3032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011023
  issn: 0005-1179
  databaseCode: U2A
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPMWz8sCGjFLHdpKxRQ2l0DJApTJVjh8SEk0lkiJ-PmcnqZDKwhIr0sWD73L3nT_fGaFrGWqehJYRJq0lDGyKxMIwIjJrFY2FpX4rezwRwykbzfisruMumtPuDSXpPXV17whzNb1gQGA_PmQBUtlGbe66eYERT2lvTR24XgQV5uXEiddU5p9TbNCfPqqk-2ivhoO4V-nvAG2Z_BDt_moSCG_jdWfV4giZpy55ht98AV-l747qBiG8tNgV3Sy_8AjUg-vT_5AD44dbPPiWqsTN_heWucaTVUXUfGDfHXhRFyDl-AV0uDDFMZqmg9e7IamvSiBFN4lLAiFHcZUFkQEAAg_GooTLiBoeKcpjnWUBALWYcx0FBmK2pVpZLUScaRHbkIYnqJUvc3OKsARXDDDI8MQyBi5AGsW0UIALZFeGAT1DN82azWt7L-Y-lQjZfGOFz_8lfYF2qMtnfa3fJWqVnytzBUG_zDqo3Uv7_Ykb798eBx2v9B_jeaXR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HdSD3-K3OXiTjC5N0vY4ZHPfHtxATyVNExBdB7YT8a_3tU2HOC-7FApJCcnre7-XX34vCN1KN-aBaxhh0hjCwKaILzQjIjJGUV8YWmxlj8aiO2X9Z_5sddxpddq9oiQLT13eO8JyTS8YENhPEbIAqWyiOoP8hNZQvfXwMmgvyYO8GkGJejnJO1gy89-PrBCgRVzp7KFJNaLyOMlbY5FFDfX9p1jjmkPeR7sWZ-JWaRgHaEMnh2jnV_VBeBstS7amR0gPm-QR_McMenVecw4dGuG5wbmaZ_6J-7Du2MoKILnGvQZuf0mV4WpjDcskxuNFyQC946Ls8MwqmxL8BMYx0-kxmnbak_susXcwkLQZ-BmBWKa4ihxPA7KBB2NewKVHNfcU5X4cRQ4gQJ_z2HM0gAFDY2ViIfwoFr5xqXuCask80acIS_DxgK80Dwxj4FukViwWCgCHbErXoWforprF0P5IaVjkKC4LV6byfK3WN2irOxkNw2FvPLhA2zRPmgtB4SWqZR8LfQXIIouurSX9AFm-wlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfOLbPXiT1XSzu0mORRva2lZBC72FzT5AsKmYVPz5TpJNEerFSyAwyWFnsvPNfvlmELqWvuaRbxlh0lrCIKZIKAwjIrVW0VBYWh1lj8aiN2GDKZ-6Oad587d7Q0nWmoayS1NW3H1o62aQsFLfC8EEsVSlL0At62iDlX0SIKAntLOkEcq-BDX-5aQ0d7Tmn69YoUKrDBPvoh0HDXGn9uUeWjPZPtr-1TAQ7kbLLqv5ATLDNnmCT34GT8VvJe0NRnhucSnAmX_hAbgKOyUA1MO4f4u731IVuDkLwzLTeLyoSZt3XHUKnjkxUoZfwJ8zkx-iSdx9ve8RNzaB5O0oLAikH8VV6gUGwAhcGAsiLgNqeKAoD3WaegDaQs514BnI35ZqZbUQYapFaH3qH6FWNs_MMcIStmWARIZHljHYDqRRTAsFGEG2pe_RE3TTrFniYj9PqrLCZ8nKCp_-y_oKbT4_xMmwP348Q1u0LHMrCeA5ahWfC3MBWKBILyt__wCB-Knp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L1-Optimal+Filtering+of+Markov+Jump+Processes.+I.+Exact+Solution+and+Numerical+Implementation+Schemes&rft.jtitle=Automation+and+remote+control&rft.au=Borisov%2C+A.+V.&rft.date=2020-11-01&rft.pub=Pleiades+Publishing&rft.issn=0005-1179&rft.eissn=1608-3032&rft.volume=81&rft.issue=11&rft.spage=1945&rft.epage=1962&rft_id=info:doi/10.1134%2FS0005117920110016&rft.externalDocID=10_1134_S0005117920110016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1179&client=summon