A Kernel-Learning Approach to Semi-supervised Clustering with Relative Distance Comparisons
We consider the problem of clustering a given dataset into k clusters subject to an additional set of constraints on relative distance comparisons between the data items. The additional constraints are meant to reflect side-information that is not expressed in the feature vectors, directly. Relative...
        Saved in:
      
    
          | Published in | Machine Learning and Knowledge Discovery in Databases pp. 219 - 234 | 
|---|---|
| Main Authors | , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        2015
     | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 3319235273 9783319235271  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-319-23528-8_14 | 
Cover
| Abstract | We consider the problem of clustering a given dataset into k clusters subject to an additional set of constraints on relative distance comparisons between the data items. The additional constraints are meant to reflect side-information that is not expressed in the feature vectors, directly. Relative comparisons can express structures at finer level of detail than must-link (ML) and cannot-link (CL) constraints that are commonly used for semi-supervised clustering. Relative comparisons are particularly useful in settings where giving an ML or a CL constraint is difficult because the granularity of the true clustering is unknown.
Our main contribution is an efficient algorithm for learning a kernel matrix using the log determinant divergence (a variant of the Bregman divergence) subject to a set of relative distance constraints. Given the learned kernel matrix, a clustering can be obtained by any suitable algorithm, such as kernel k-means. We show empirically that kernels found by our algorithm yield clusterings of higher quality than existing approaches that either use ML/CL constraints or a different means to implement the supervision using relative comparisons. | 
    
|---|---|
| AbstractList | We consider the problem of clustering a given dataset into k clusters subject to an additional set of constraints on relative distance comparisons between the data items. The additional constraints are meant to reflect side-information that is not expressed in the feature vectors, directly. Relative comparisons can express structures at finer level of detail than must-link (ML) and cannot-link (CL) constraints that are commonly used for semi-supervised clustering. Relative comparisons are particularly useful in settings where giving an ML or a CL constraint is difficult because the granularity of the true clustering is unknown.
Our main contribution is an efficient algorithm for learning a kernel matrix using the log determinant divergence (a variant of the Bregman divergence) subject to a set of relative distance constraints. Given the learned kernel matrix, a clustering can be obtained by any suitable algorithm, such as kernel k-means. We show empirically that kernels found by our algorithm yield clusterings of higher quality than existing approaches that either use ML/CL constraints or a different means to implement the supervision using relative comparisons. | 
    
| Author | Amid, Ehsan Gionis, Aristides Ukkonen, Antti  | 
    
| Author_xml | – sequence: 1 givenname: Ehsan surname: Amid fullname: Amid, Ehsan email: ehsan.amid@aalto.fi – sequence: 2 givenname: Aristides surname: Gionis fullname: Gionis, Aristides – sequence: 3 givenname: Antti surname: Ukkonen fullname: Ukkonen, Antti  | 
    
| BookMark | eNo1kMtOwzAQRQ0Uibb0D1j4BwxjTxLbyyo8RSUkHisWlptOaSB1ojgtv09SYDXSmaurqzNho1AHYuxCwqUE0FdWG4ECpRUKU2WEcTI5YrMeYw8PzByzscykFIiJPWGT_4fGERsDghJWJ3jGJjF-AoDSVo3Z-5w_UhuoEgvybSjDB583TVv7YsO7mr_QthRx11C7LyOteF7tYkftEPsuuw1_psp35Z74dRk7Hwrieb1tfFvGOsRzdrr2VaTZ352yt9ub1_xeLJ7uHvL5QkRpTScyZVIkU8jEgAbwWhUpFj6xqU281WvplTZrsyqkR_TSesi0IZMBkl5aQJwy9dsbm2EZtW5Z11_RSXCDO9dLcuh6G-7gyQ3u8Acu8F8R | 
    
| ContentType | Book Chapter | 
    
| Copyright | Springer International Publishing Switzerland 2015 | 
    
| Copyright_xml | – notice: Springer International Publishing Switzerland 2015 | 
    
| DOI | 10.1007/978-3-319-23528-8_14 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9783319235288 3319235281  | 
    
| EISSN | 1611-3349 | 
    
| Editor | Santos Costa, Vítor Appice, Annalisa Rodrigues, Pedro Pereira Soares, Carlos Jorge, Alípio Gama, João  | 
    
| Editor_xml | – sequence: 1 givenname: Annalisa surname: Appice fullname: Appice, Annalisa email: annalisa.appice@uniba.it – sequence: 2 givenname: Pedro Pereira surname: Rodrigues fullname: Rodrigues, Pedro Pereira email: pprodrigues@med.up.pt – sequence: 3 givenname: Vítor surname: Santos Costa fullname: Santos Costa, Vítor email: vsc@dcc.fc.up.pt – sequence: 4 givenname: Carlos surname: Soares fullname: Soares, Carlos email: csoares@fe.up.pt – sequence: 5 givenname: João surname: Gama fullname: Gama, João email: jgama@fep.up.pt – sequence: 6 givenname: Alípio surname: Jorge fullname: Jorge, Alípio email: amjorge@fc.up.pt  | 
    
| EndPage | 234 | 
    
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02  | 
    
| ID | FETCH-LOGICAL-s198t-62853e8c1480700a72c53ca49594a97f1a278f8dc1a33a19a0678e8603e7b9033 | 
    
| ISBN | 3319235273 9783319235271  | 
    
| ISSN | 0302-9743 | 
    
| IngestDate | Wed Sep 17 04:53:40 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s198t-62853e8c1480700a72c53ca49594a97f1a278f8dc1a33a19a0678e8603e7b9033 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | springer_books_10_1007_978_3_319_23528_8_14 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015 | 
    
| PublicationDateYYYYMMDD | 2015-01-01 | 
    
| PublicationDate_xml | – year: 2015 text: 2015  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham | 
    
| PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence | 
    
| PublicationSeriesTitle | Lecture Notes in Computer Science | 
    
| PublicationSeriesTitleAlternate | Lect.Notes Computer | 
    
| PublicationSubtitle | European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I | 
    
| PublicationTitle | Machine Learning and Knowledge Discovery in Databases | 
    
| PublicationYear | 2015 | 
    
| Publisher | Springer International Publishing | 
    
| Publisher_xml | – name: Springer International Publishing | 
    
| RelatedPersons | Tanaka, Yuzuru Goebel, Randy Wahlster, Wolfgang  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: Randy surname: Goebel fullname: Goebel, Randy – sequence: 2 givenname: Yuzuru surname: Tanaka fullname: Tanaka, Yuzuru – sequence: 3 givenname: Wolfgang surname: Wahlster fullname: Wahlster, Wolfgang  | 
    
| SSID | ssj0002792 ssj0001558583  | 
    
| Score | 1.8678584 | 
    
| Snippet | We consider the problem of clustering a given dataset into k clusters subject to an additional set of constraints on relative distance comparisons between the... | 
    
| SourceID | springer | 
    
| SourceType | Publisher | 
    
| StartPage | 219 | 
    
| SubjectTerms | Data Item Kernel Matrix Pairwise Constraint Relative Comparison Spectral Cluster  | 
    
| Title | A Kernel-Learning Approach to Semi-supervised Clustering with Relative Distance Comparisons | 
    
| URI | http://link.springer.com/10.1007/978-3-319-23528-8_14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW5YI4UL4ElCIfuK2CktjeOIceonZL1ZZe6KJKHCLHccSq7bZqvBz4PfxQZuI4SdNeyiWKomjtnXkZj8fzZgj5zDRsGxIpgtLwJOAq0kEqsNwd56aqRBFWHMnJ307nh0t-dC7OJ5O_g6yljS2-6D8P8kr-R6vwDPSKLNlHaLb7UXgA96BfuIKG4Tpyfu-GWdsOQ5gGaXyFVEc1PPYhMiyrqTE9s-H17SurcL3qHOjsatWodvFrkJTzFWOzrjtx8-mX_fvLC3AkjS83YFdDpGWzY3O7NpdBN5PspidqfTdXq6De3KBNqjGcfLnB2gxdDNhl4_1uJmwb_sJe1xrRDY-iNPXuSXvacXptmySymW9I4e3TMIARiVEAwwcwRyHQPgp3Z8fLGLqkInZ9WzzzC6w67IucoTTOkM-xPCNz5VBHxtmt87ELot5bQoZZI8jwwtFkIHPslv4EJjAlT7PF0cmPPpInYMsl-_UfSzK6sys3K2QU-VkzV_Op_xcDNudDQ947n2_cnrMt8hypMBQ5KiC0l2Ri1q_ICy932sr9NfmZ0REEqIcAtdd0BAHaQ4AiBKiHAPUQoAMIvCHLg8XZ3mHQdu0I6iiVNkBOLjNSR1isIAxVEmvBtIKNeMpVmlSRihNZyVJHijEVpQr9JSPnITNJkYaMvSXTNUD6HaFRIUBMXKqyCLkuU8XnqYHbxMRcmEK_JzMvnRy_wzr3RbhBljnLQZZ5I8scZfnhUW9vk2c9WD-Sqb3dmB3wP23xqQXAP8LDfzg | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.au=Amid%2C+Ehsan&rft.au=Gionis%2C+Aristides&rft.au=Ukkonen%2C+Antti&rft.atitle=A+Kernel-Learning+Approach+to+Semi-supervised+Clustering+with+Relative+Distance+Comparisons&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319235271&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=219&rft.epage=234&rft_id=info:doi/10.1007%2F978-3-319-23528-8_14 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |