Precise Lumen Segmentation in Coronary Computed Tomography Angiography

Coronary computed tomography angiography (CCTA) allows for non-invasive identification and grading of stenoses by evaluating the degree of narrowing of the blood-filled vessel lumen. Recently, methods have been proposed that simulate coronary blood flow using computational fluid dynamics (CFD) to co...

Full description

Saved in:
Bibliographic Details
Published inMedical Computer Vision: Algorithms for Big Data pp. 137 - 147
Main Authors Lugauer, Felix, Zheng, Yefeng, Hornegger, Joachim, Kelm, B. Michael
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2014
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319139715
3319139711
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-13972-2_13

Cover

Abstract Coronary computed tomography angiography (CCTA) allows for non-invasive identification and grading of stenoses by evaluating the degree of narrowing of the blood-filled vessel lumen. Recently, methods have been proposed that simulate coronary blood flow using computational fluid dynamics (CFD) to compute the fractional flow reserve non-invasively. Both grading and CFD rely on a precise segmentation of the vessel lumen from CCTA. We propose a novel, model-guided segmentation approach based on a Markov random field formulation with convex priors which assures the preservation of the tubular structure of the coronary lumen. Allowing for various robust smoothness terms, the approach yields very accurate lumen segmentations even in the presence of calcified and non-calcified plaques. Evaluations on the public Rotterdam segmentation challenge demonstrate the robustness and accuracy of our method: on standardized tests with multi-vendor CCTA from 30 symptomatic patients, we achieve superior accuracies as compared to both state-of-the-art methods and medical experts.
AbstractList Coronary computed tomography angiography (CCTA) allows for non-invasive identification and grading of stenoses by evaluating the degree of narrowing of the blood-filled vessel lumen. Recently, methods have been proposed that simulate coronary blood flow using computational fluid dynamics (CFD) to compute the fractional flow reserve non-invasively. Both grading and CFD rely on a precise segmentation of the vessel lumen from CCTA. We propose a novel, model-guided segmentation approach based on a Markov random field formulation with convex priors which assures the preservation of the tubular structure of the coronary lumen. Allowing for various robust smoothness terms, the approach yields very accurate lumen segmentations even in the presence of calcified and non-calcified plaques. Evaluations on the public Rotterdam segmentation challenge demonstrate the robustness and accuracy of our method: on standardized tests with multi-vendor CCTA from 30 symptomatic patients, we achieve superior accuracies as compared to both state-of-the-art methods and medical experts.
Author Lugauer, Felix
Hornegger, Joachim
Kelm, B. Michael
Zheng, Yefeng
Author_xml – sequence: 1
  givenname: Felix
  surname: Lugauer
  fullname: Lugauer, Felix
  email: felix.lugauer@fau.de
– sequence: 2
  givenname: Yefeng
  surname: Zheng
  fullname: Zheng, Yefeng
– sequence: 3
  givenname: Joachim
  surname: Hornegger
  fullname: Hornegger, Joachim
– sequence: 4
  givenname: B. Michael
  surname: Kelm
  fullname: Kelm, B. Michael
BookMark eNo1kM1OwzAQhA0UibbkDTjkBQy72fgnx6qiBakSSBSJm5UmTggQu4rTQ9-epJTTjGZWK30zYxPnnWXsDuEeAdRDpjQnTphxpEwlPDFIF2xGQ3IKPi7ZFCUiJ0qzKxYN9_8digmbAkHCM5XSDYtC-AIATEETwpStXjtbNMHGm0NrXfxm60H6vG-8ixsXL33nXd4dB9PuD70t461vfd3l-89jvHB1c_a37LrKf4KNzjpn76vH7fKJb17Wz8vFhgfMdM-phFJIsJUuZYJCpLsCdmVVCTFiyEoXEnDsVFKUSgqwUBQpkNK5hlTmNGfJ39-w7xpX287svP8OBsGMS5mB3JAZ2M1pGDMuRb_Av1jL
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2014
Copyright_xml – notice: Springer International Publishing Switzerland 2014
DOI 10.1007/978-3-319-13972-2_13
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 331913972X
9783319139722
EISSN 1611-3349
Editor Cai, Weidong (Tom)
Langs, Georg
Montillo, Albert
Menze, Bjoern
Müller, Henning
Metaxas, Dimitris
Kelm, Michael
Zhang, Shaoting
Editor_xml – sequence: 1
  givenname: Bjoern
  surname: Menze
  fullname: Menze, Bjoern
  email: bjoern.menze@tum.de
– sequence: 2
  givenname: Georg
  surname: Langs
  fullname: Langs, Georg
  email: georg.langs@meduniwien.ac.at
– sequence: 3
  givenname: Albert
  surname: Montillo
  fullname: Montillo, Albert
  email: montillo@ge.com
– sequence: 4
  givenname: Michael
  surname: Kelm
  fullname: Kelm, Michael
  email: michael.kelm@siemens.com
– sequence: 5
  givenname: Henning
  surname: Müller
  fullname: Müller, Henning
  email: henning.mueller@hevs.ch
– sequence: 6
  givenname: Shaoting
  surname: Zhang
  fullname: Zhang, Shaoting
  email: szhang16@uncc.edu
– sequence: 7
  givenname: Weidong (Tom)
  surname: Cai
  fullname: Cai, Weidong (Tom)
  email: tom.cai@sydney.edu.au
– sequence: 8
  givenname: Dimitris
  surname: Metaxas
  fullname: Metaxas, Dimitris
  email: dnm@cs.rutgers.edu
EndPage 147
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s198t-3d0d560ef8d621554bc0bdff5539726f8c6018d6272cd7650e0cc40378a8046a3
ISBN 9783319139715
3319139711
ISSN 0302-9743
IngestDate Wed Sep 17 04:05:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s198t-3d0d560ef8d621554bc0bdff5539726f8c6018d6272cd7650e0cc40378a8046a3
Notes Felix Lugauer: The author has been with Siemens Corporate Technology for this work.
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_319_13972_2_13
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle International Workshop, MCV 2014, Held in Conjunction with MICCAI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers
PublicationTitle Medical Computer Vision: Algorithms for Big Data
PublicationYear 2014
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001408310
ssj0002792
Score 1.9105798
Snippet Coronary computed tomography angiography (CCTA) allows for non-invasive identification and grading of stenoses by evaluating the degree of narrowing of the...
SourceID springer
SourceType Publisher
StartPage 137
SubjectTerms CCTA
Lumen segmentation
Markov random field
Tubular surface
Title Precise Lumen Segmentation in Coronary Computed Tomography Angiography
URI http://link.springer.com/10.1007/978-3-319-13972-2_13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcdyk69I2-waGboEC0qEeGDkkRIzDcoEMSpJMgSidVQCwDlgwU_Uf9l73jw5KdLOkiGJRtkXen4_F430fGvoQRvn04kfo5xgq-lJHyFQjpJ7EKQJVC5frMyO8X8fmVXNxEN5PJ31HV0rZXR8Wfe3El_6NVbEO9Ekr2AZrd_Sk24GfUL15Rw3g9CH7306yNo6kt9NLfnMvgXWuYuMm712tc9P8yZAveaVOjdvudA15u63xrVDWH2-b3kDwG8-b_hArsjKYrazct1LX5wYIAWM1q8NMmp3p6tFeAb23wB1FndOAt0QGSW6pXFunUGrDhZq3BwHYEVNOzsgza3klbN2M2bZIndF-XdsvjYt3rSrJh9NZJjbMYQh5kMVwW8yAPOqTi9pa9IfoNilwNENTBv9C14-LIeEsw3jwmjsbQcKJaDy0Mx4yd7IWh-7wzj4xLRwjmRU-b-bOMzkd-hB2YsscnZ4vl9ZDOk_rItl0QQLyMZgPL9IpgRa7XwhA_DaMYQTrve-SdTXod-1w-Z08JD8MJqIJCe8Em0L5kz-zqhVuxd9jkVOHaXrG5NQCuDYCPDYA3LXcGwJ0B8MEA-MgAXrOr-dnlt3PfHtzhd-I47f2wDEqMpKFKy3hGAasqAlVWVRTRmOIqLeJA0L1kVpQJrhEgKAoZhEmap4GM8_ANm7brFt4ynlTHMk4BRJpgpJxLlQBlLUVErFRJWL1jnpNNRq9ilzkebpRkFmYoyUxLMiNJvn_Qtz-wJ4OpfmTTfrOFTxiC9uqzVf8_VPF9OQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Computer+Vision%3A+Algorithms+for+Big+Data&rft.au=Lugauer%2C+Felix&rft.au=Zheng%2C+Yefeng&rft.au=Hornegger%2C+Joachim&rft.au=Kelm%2C+B.+Michael&rft.atitle=Precise+Lumen+Segmentation+in+Coronary+Computed+Tomography+Angiography&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2014-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319139715&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=137&rft.epage=147&rft_id=info:doi/10.1007%2F978-3-319-13972-2_13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon