Combining PSO and FCM for Dynamic Fuzzy Clustering Problems

This paper proposes a dynamic data clustering algorithm, called PSOFC, in which Particle Swarm Optimization (PSO) is combined with the fuzzy c-means (FCM) clustering method to find the number of clusters and cluster centers concurrently. Fuzzy c-means can be applied to data clustering problems but t...

Full description

Saved in:
Bibliographic Details
Published inSwarm Intelligence Based Optimization pp. 1 - 8
Main Authors Kao, Yucheng, Chen, Ming-Hsien, Hsieh, Kai-Ming
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 01.01.2014
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319129694
9783319129693
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-12970-9_1

Cover

Abstract This paper proposes a dynamic data clustering algorithm, called PSOFC, in which Particle Swarm Optimization (PSO) is combined with the fuzzy c-means (FCM) clustering method to find the number of clusters and cluster centers concurrently. Fuzzy c-means can be applied to data clustering problems but the number of clusters must be given in advance. This paper tries to overcome this shortcoming. In the evolutionary process of PSOFC, a discrete PSO is used to search for the best number of clusters. With a specified number of cluster, each particle employs FCM to refine cluster centers for data clustering. Thus PSOFC can automatically determine the best number of clusters during the data clustering process. Six datasets were used to evaluate the proposed algorithm. Experimental results demonstrated that PSOFC is an effective algorithm for solving dynamic fuzzy clustering problems.
AbstractList This paper proposes a dynamic data clustering algorithm, called PSOFC, in which Particle Swarm Optimization (PSO) is combined with the fuzzy c-means (FCM) clustering method to find the number of clusters and cluster centers concurrently. Fuzzy c-means can be applied to data clustering problems but the number of clusters must be given in advance. This paper tries to overcome this shortcoming. In the evolutionary process of PSOFC, a discrete PSO is used to search for the best number of clusters. With a specified number of cluster, each particle employs FCM to refine cluster centers for data clustering. Thus PSOFC can automatically determine the best number of clusters during the data clustering process. Six datasets were used to evaluate the proposed algorithm. Experimental results demonstrated that PSOFC is an effective algorithm for solving dynamic fuzzy clustering problems.
Author Hsieh, Kai-Ming
Kao, Yucheng
Chen, Ming-Hsien
Author_xml – sequence: 1
  givenname: Yucheng
  surname: Kao
  fullname: Kao, Yucheng
  email: ykao@ttu.edu.tw
– sequence: 2
  givenname: Ming-Hsien
  surname: Chen
  fullname: Chen, Ming-Hsien
– sequence: 3
  givenname: Kai-Ming
  surname: Hsieh
  fullname: Hsieh, Kai-Ming
BookMark eNotkM1OwzAQhA0UibbkCbj4BQy7WceOxQmFBpCKigScrfzYqNAmKG4P7dPjlp5G-nY0q5kJG3V95xi7QbhFAH1ndC5IEBqBqdEgjMUzlkRKkR2ROWdjVIiCSJoLNjkdlJEjNgaCVBgt6YolIXwDAFKucpBjdl_063rZLbsv_va-4FXX8rJ45b4f-OOuq9bLhpfb_X7Hi9U2bNxwNA59vXLrcM0ufbUKLjnplH2Ws4_iWcwXTy_Fw1wENHojFJJrsM4aaGSWetIq1954bTKSUleKQKLLvcNcN-B8pmOv2jXGVVHa1tOU4X9u-D38d4Ot-_4nWAR7WMdGvyUbC9vjFDYq_QHHbFO-
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2014
Copyright_xml – notice: Springer International Publishing Switzerland 2014
DOI 10.1007/978-3-319-12970-9_1
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319129709
3319129708
EISSN 1611-3349
Editor Idoumghar, Lhassane
Lepagnot, Julien
Siarry, Patrick
Editor_xml – sequence: 1
  givenname: Patrick
  surname: Siarry
  fullname: Siarry, Patrick
– sequence: 2
  givenname: Lhassane
  surname: Idoumghar
  fullname: Idoumghar, Lhassane
– sequence: 3
  givenname: Julien
  surname: Lepagnot
  fullname: Lepagnot, Julien
  email: julien.lepagnot@uha.fr
EndPage 8
GroupedDBID -DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-s197t-613ec1b5c0c452f37687f9f7953447a63041e8fe187c0ef57978bec9ea8beddf3
ISBN 3319129694
9783319129693
ISSN 0302-9743
IngestDate Tue Jul 29 20:25:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s197t-613ec1b5c0c452f37687f9f7953447a63041e8fe187c0ef57978bec9ea8beddf3
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_319_12970_9_1
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle First International Conference, ICSIBO 2014, Mulhouse, France, May 13-14, 2014. Revised Selected Papers
PublicationTitle Swarm Intelligence Based Optimization
PublicationYear 2014
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001386804
ssj0002792
Score 1.9876212
Snippet This paper proposes a dynamic data clustering algorithm, called PSOFC, in which Particle Swarm Optimization (PSO) is combined with the fuzzy c-means (FCM)...
SourceID springer
SourceType Publisher
StartPage 1
SubjectTerms Data Clustering
Fuzzy c-means
Particle Swarm Optimization
Title Combining PSO and FCM for Dynamic Fuzzy Clustering Problems
URI http://link.springer.com/10.1007/978-3-319-12970-9_1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKuSAOjC8BA-QDJyqjpk7iRIjDNlZV07ohsaFxipzEhkmsm9ZESP3r9_NXk5VdxiVpLSuO3y9-7_n5fRDygWeq1DKZsFxWksUiiVgm45IJjv5cZzKz6RjmR-nsND44S84Gg6ue11LblJ-q1Z1xJf-DKtqAq4mSvQey64eiAb-BL65AGNcN5fe2mdXFcPyV1xc-DMSn1NyFSKpHx-ACFz68cs1PpTWJ_myBkZdV9kxfed_5xS82W553YWHmz2_nbXHO5kG8-U8LPKS0dSVG374f29OH6d7c-it-dfXtR9N2tQKv-dOaNAy2o6tb4xR4Qxu1_HLojy-OLhvrFTYKFSYCw-lbJKJ4wyIRLJIbNs3OrHZrC8vBA6BzpK5OYgjlApvGRsc1KceZU5Nvkbv8pp7bRn2xfac86LuAmHAtjCTGLC-wX36AsYfk4c7-weGPzirHszQzG1Qvy016RXcO5V7IRAeFF3ZpJXsTWCe1cnmLN0b856jdajAnW-SxiWqhJtwE5HpKBmrxjDwJFKee4s_J5zW4FOBSgEsBLgW41INLLbi0A5cGcF-Q0-n-yd6M-QIbbBnlomFQ5VQVlUk1ruJkoiFrMqFzLfLE5IGUKR_Hkcq0ijJRjZVOBKaFNZ8riVtda_6SDBeXC_WK0DLiXNf1pI50GlcVdvEmEZ4UE2i4Aov_NfkYZl-YJbMsQr5sPLPgBUhVWFIVuL-5T-dt8qj7CN-SYXPdqndQFJvyvUf3BknbX0U
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Swarm+Intelligence+Based+Optimization&rft.au=Kao%2C+Yucheng&rft.au=Chen%2C+Ming-Hsien&rft.au=Hsieh%2C+Kai-Ming&rft.atitle=Combining+PSO+and+FCM+for+Dynamic+Fuzzy+Clustering+Problems&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2014-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319129693&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1007%2F978-3-319-12970-9_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon