VSAI: visible signature reduction with camouflage patterns via generative AI algorithm

Hiding platforms in plain sight requires camouflage schemes that blend well with the environment. Such a camouflage scheme needs to cater for different geographical locations, seasons, and times of day. Inspired from nature’s biology, this paper presents a new algorithm, called Visible Signatures AI...

Full description

Saved in:
Bibliographic Details
Published inProceedings of SPIE, the international society for optical engineering Vol. 13199; pp. 1319904 - 1319904-10
Main Authors Gulrez, Tauseef, Culpepper, Joanne B., Phung, Son Lam, Le, Hoang Thanh
Format Conference Proceeding
LanguageEnglish
Published SPIE 01.11.2024
Online AccessGet full text
ISBN9781510681064
151068106X
ISSN0277-786X
DOI10.1117/12.3034275

Cover

Abstract Hiding platforms in plain sight requires camouflage schemes that blend well with the environment. Such a camouflage scheme needs to cater for different geographical locations, seasons, and times of day. Inspired from nature’s biology, this paper presents a new algorithm, called Visible Signatures AI-generator (VSAI), for generating camouflage patterns iteratively to reduce visible signatures of objects. The proposed algorithm accepts a set of images from any dynamically changing environment. It then generates a customized set of camouflage patterns with colors and textures that are optimized for the environment. We present a novel Generative Adversarial Network (GAN), in which a generator with meta-parameters is iteratively trained to produce camouflage patterns. Simultaneously, a discriminator is trained to differentiate images with or without the embedded camouflage patterns. Unlike the existing methods, the meta-parameters used by our generator are intuitive, explainable, and extendable by the end-users. The experimental results show that the camouflage patterns designed by VSAI are consistent in color, texture, and semantic contents. Furthermore, VSAI produces improved outputs compared to several optical camouflage generation methods, including the Netherland Fractal Patterns, CamoGAN and CamoGen. The full end-to-end pattern generation process can operate at a speed of 1.21 second per pattern. Evaluated on the benchmark dataset Cityscapes, the YOLOv8 detector shows a significantly reduced target detection performance when our camouflage patterns are applied, yielding an mAP@0.5 detection score of 7.2% and an mAP@0.5:0.95 detection score of 3.2%. Compared to CamoGAN, our camouflage generation method leads to an average reduction of 4.0% in the mAP@0.5:0.95 detection score.
AbstractList Hiding platforms in plain sight requires camouflage schemes that blend well with the environment. Such a camouflage scheme needs to cater for different geographical locations, seasons, and times of day. Inspired from nature’s biology, this paper presents a new algorithm, called Visible Signatures AI-generator (VSAI), for generating camouflage patterns iteratively to reduce visible signatures of objects. The proposed algorithm accepts a set of images from any dynamically changing environment. It then generates a customized set of camouflage patterns with colors and textures that are optimized for the environment. We present a novel Generative Adversarial Network (GAN), in which a generator with meta-parameters is iteratively trained to produce camouflage patterns. Simultaneously, a discriminator is trained to differentiate images with or without the embedded camouflage patterns. Unlike the existing methods, the meta-parameters used by our generator are intuitive, explainable, and extendable by the end-users. The experimental results show that the camouflage patterns designed by VSAI are consistent in color, texture, and semantic contents. Furthermore, VSAI produces improved outputs compared to several optical camouflage generation methods, including the Netherland Fractal Patterns, CamoGAN and CamoGen. The full end-to-end pattern generation process can operate at a speed of 1.21 second per pattern. Evaluated on the benchmark dataset Cityscapes, the YOLOv8 detector shows a significantly reduced target detection performance when our camouflage patterns are applied, yielding an mAP@0.5 detection score of 7.2% and an mAP@0.5:0.95 detection score of 3.2%. Compared to CamoGAN, our camouflage generation method leads to an average reduction of 4.0% in the mAP@0.5:0.95 detection score.
Author Phung, Son Lam
Le, Hoang Thanh
Gulrez, Tauseef
Culpepper, Joanne B.
Author_xml – sequence: 1
  givenname: Tauseef
  surname: Gulrez
  fullname: Gulrez, Tauseef
  organization: Defence Science and Technology Group (Australia)
– sequence: 2
  givenname: Joanne B.
  surname: Culpepper
  fullname: Culpepper, Joanne B.
  organization: Defence Science and Technology Group (Australia)
– sequence: 3
  givenname: Son Lam
  surname: Phung
  fullname: Phung, Son Lam
  organization: Univ. of Wollongong (Australia)
– sequence: 4
  givenname: Hoang Thanh
  surname: Le
  fullname: Le, Hoang Thanh
  organization: Univ. of Wollongong (Australia)
BookMark eNotkLFOwzAURS1RJNrShS_wjJTy7DixwxZVUCJVYgAqtshxnoNR6lSxU36fIjpc3eWeO5wFmfnBIyF3DNaMMfnA-DqFVHCZXZFVIRXLGOTqHDEjc-BSJlLlnzdkEcI3AFeZLOZkv38rq0d6csE1PdLgOq_jNCIdsZ1MdIOnPy5-UaMPw2R73SE96hhx9OEMadqhx1FHd0JaVlT33TCe54dbcm11H3B16SX5eH5637wku9dttSl3SWAFxEQUQqC2AljWtkUrQUDOjcwKaRvMU25zsIjKgFY5QtNYrUyrZMONUqiaNF2S-__fcHRYH8fBILbOd6FmUP9ZqRmvL1bSXwH2Vus
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.3034275
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Stein, Karin
Schleijpen, Ric
Editor_xml – sequence: 1
  givenname: Karin
  surname: Stein
  fullname: Stein, Karin
  organization: Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
– sequence: 2
  givenname: Ric
  surname: Schleijpen
  fullname: Schleijpen, Ric
  organization: TNO Defence, Security and Safety (Netherlands)
EndPage 1319904-10
ExternalDocumentID 10_1117_12_3034275
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
ID FETCH-LOGICAL-s190t-4944eaf4015dd9d704062c7597fbe632f60fee8c0a86e0bbfa8cd87b2c88e8b33
ISBN 9781510681064
151068106X
ISSN 0277-786X
IngestDate Sat Nov 09 05:00:40 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s190t-4944eaf4015dd9d704062c7597fbe632f60fee8c0a86e0bbfa8cd87b2c88e8b33
Notes Conference Location: Edinburgh, United Kingdom
Conference Date: 2024-09-16|2024-09-20
ParticipantIDs spie_proceedings_10_1117_12_3034275
PublicationCentury 2000
PublicationDate 20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241101
  day: 1
PublicationDecade 2020
PublicationTitle Proceedings of SPIE, the international society for optical engineering
PublicationYear 2024
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.2748454
Snippet Hiding platforms in plain sight requires camouflage schemes that blend well with the environment. Such a camouflage scheme needs to cater for different...
SourceID spie
SourceType Publisher
StartPage 1319904
Title VSAI: visible signature reduction with camouflage patterns via generative AI algorithm
URI http://www.dx.doi.org/10.1117/12.3034275
Volume 13199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECUc99KeuqToDgLtzZArax335m6wAqcIYCfIzSApKgngSIJlXfpT_cUOF4tK6kPbi2ATFCl5noczw5lHQj5Mw4TjOhR7jAvwogkXqAejwuNpAHkOBQhdSHv6I5mfRyeX8eVg8KuXtdTu-Fj8PFhX8j9SxTaUq6qS_QfJdoNiA35G-eIVJYzXe8bvwXXmrGvU-RjLs0ynNipT8uZOoK_ppWZWtYleS0dE2IfNxXKWqSiBqjlXRVUqv0Nzf462iuRVo8Wkq7Pbqi02KuWn1hydZYM3MXUks7Rs4rNsxDZX1Ra733Z5Pu1ma4LWK9Y2UhbdJki7qWVdGwSdVAz1_-jz2G1aWKW0xPkXrBtuoeOxc-x-NVpds_K6H8UIIlvO53I_srueLRoivqJKMxTnViGq7eYU9MmHTnujDpn2NLD-bk40tgu6bfFM-uyBJUOTDgTjULEhmmNc7lFwG0cpXU-Cte10RI5S8Ifkwezr6WLZefgQG3LH_YOqSsL9i1i6J_diliwXB_7oZlcJhfWN7Nk4q8fk2FV_UgetJ2Qgy6fkUY-48hm5UDD5RC1IaAcS2oGEKpBQBxK6BwnexKgDCZ1ltAPJMTn__m31Ze7ZEzq8Bg3JnRdNo0iyAn30OM-neYorQhKIFJ3UgsskDIrEL6QE4TNIpM95wUDkkPJAAEjgYficDMuqlC8IDXIBcRyH8QRkxBIOMePoWzAAnCQJ5UvyXv0wa_d_a9Z_yuXVX_V6TR46DL4hw922lW_Rttzxd1aivwE8pHQ4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+SPIE%2C+the+international+society+for+optical+engineering&rft.atitle=VSAI%3A+visible+signature+reduction+with+camouflage+patterns+via+generative+AI+algorithm&rft.au=Gulrez%2C+Tauseef&rft.au=Culpepper%2C+Joanne+B.&rft.au=Phung%2C+Son+Lam&rft.au=Le%2C+Hoang+Thanh&rft.date=2024-11-01&rft.pub=SPIE&rft.isbn=9781510681064&rft.issn=0277-786X&rft.volume=13199&rft.spage=1319904&rft.epage=1319904-10&rft_id=info:doi/10.1117%2F12.3034275&rft.externalDocID=10_1117_12_3034275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon