Continuous human activity recognition using a MIMO radar for transitional motion analysis
The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk assessment. In this paper, we examine a multi-antenna radar system that can process radar data returns for multiple individuals in an indoor set...
Saved in:
| Main Authors | , , , |
|---|---|
| Format | Conference Proceeding |
| Language | English |
| Published |
SPIE
14.06.2023
|
| Online Access | Get full text |
| ISBN | 1510661581 9781510661585 |
| ISSN | 0277-786X |
| DOI | 10.1117/12.2663714 |
Cover
| Abstract | The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk assessment. In this paper, we examine a multi-antenna radar system that can process radar data returns for multiple individuals in an indoor setting, enabling CHAR for multiple subjects. This requires combining spatial and temporal signal processing techniques through micro-Doppler (MD) analysis and high-resolution receive beamforming. We employ delay and sum beamforming to capture MD signatures at three different directions of observation. As MD images may contain multiple activities, we segment the three MD signatures using an STA/LTA algorithm. MD segmentation ensures that each MD segment represents a single human motion activity. Finally, the segmented MD image is resized and processed through a convolutional neural network (CNN) to classify motion against each MD segment. |
|---|---|
| AbstractList | The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk assessment. In this paper, we examine a multi-antenna radar system that can process radar data returns for multiple individuals in an indoor setting, enabling CHAR for multiple subjects. This requires combining spatial and temporal signal processing techniques through micro-Doppler (MD) analysis and high-resolution receive beamforming. We employ delay and sum beamforming to capture MD signatures at three different directions of observation. As MD images may contain multiple activities, we segment the three MD signatures using an STA/LTA algorithm. MD segmentation ensures that each MD segment represents a single human motion activity. Finally, the segmented MD image is resized and processed through a convolutional neural network (CNN) to classify motion against each MD segment. |
| Author | Richman, Bennett J. Hamza, Syed A. Kobak, John Washington, LaJuan |
| Author_xml | – sequence: 1 givenname: John surname: Kobak fullname: Kobak, John organization: Widener Univ. (United States) – sequence: 2 givenname: Bennett J. surname: Richman fullname: Richman, Bennett J. organization: Widener Univ. (United States) – sequence: 3 givenname: LaJuan surname: Washington fullname: Washington, LaJuan organization: Widener Univ. (United States) – sequence: 4 givenname: Syed A. surname: Hamza fullname: Hamza, Syed A. organization: Widener Univ. (United States) |
| BookMark | eNotkMFKAzEYhANWsFu9-AQ5C1vzJ9kkPcqittDSi4KelmySrZE2Kcmu0Ld3rT3NHD6GmSnQJMTgELoHMgcA-Qh0ToVgEvgVKqACIgRUCiZoSqiUpVTi4wYVOX8TQlUlF1P0WcfQ-zDEIeOv4aAD1qb3P74_4eRM3AXf-xjwkH3YYY03q80WJ211wl1MuE865DOh9_gQz6ge_Sn7fIuuO73P7u6iM_T-8vxWL8v19nVVP63LDAvSl4xISYQT3FjOtOyYldowB22rug5sRTk3vKKgRWsIV5YJSoHCuMvySo3oDD385-ajd80xReOcHdvmBkjz90oDtLm8wn4BrB9W1g |
| ContentType | Conference Proceeding |
| Copyright | COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
| Copyright_xml | – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
| DOI | 10.1117/12.2663714 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| Editor | Markopoulos, Panos P. Ouyang, Bing Papalexakis, Vagelis |
| Editor_xml | – sequence: 1 givenname: Panos P. surname: Markopoulos fullname: Markopoulos, Panos P. organization: The Univ. of Texas at San Antonio (United States) – sequence: 2 givenname: Bing surname: Ouyang fullname: Ouyang, Bing organization: Florida Atlantic Univ. (United States) – sequence: 3 givenname: Vagelis surname: Papalexakis fullname: Papalexakis, Vagelis organization: Univ. of California, Riverside (United States) |
| EndPage | 125220D-8 |
| ExternalDocumentID | 10_1117_12_2663714 |
| GroupedDBID | 29O 4.4 5SJ ACGFS ALMA_UNASSIGNED_HOLDINGS EBS F5P FQ0 R.2 RNS RSJ SPBNH UT2 |
| ID | FETCH-LOGICAL-s190t-307706e64cd43a7f3d7ac3e1bb8ff1d5244c4521a6bc048d3622121615d458ac3 |
| ISBN | 1510661581 9781510661585 |
| ISSN | 0277-786X |
| IngestDate | Sat Jul 22 04:23:47 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s190t-307706e64cd43a7f3d7ac3e1bb8ff1d5244c4521a6bc048d3622121615d458ac3 |
| Notes | Conference Location: Orlando, Florida, United States Conference Date: 2023-04-30|2023-05-05 |
| ParticipantIDs | spie_proceedings_10_1117_12_2663714 |
| PublicationCentury | 2000 |
| PublicationDate | 20230614 |
| PublicationDateYYYYMMDD | 2023-06-14 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230614 day: 14 |
| PublicationDecade | 2020 |
| PublicationYear | 2023 |
| Publisher | SPIE |
| Publisher_xml | – name: SPIE |
| SSID | ssj0028579 |
| Score | 2.2317264 |
| Snippet | The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk... |
| SourceID | spie |
| SourceType | Publisher |
| StartPage | 125220D |
| Title | Continuous human activity recognition using a MIMO radar for transitional motion analysis |
| URI | http://www.dx.doi.org/10.1117/12.2663714 |
| Volume | 12522 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXPTkA-M7m-iNFLttty1HFA0SURIgwRPZttuEGKuBcpBf7-yDbiMc1EtDN5ulMN_OfjOdB0LXru8mDuHEikgEBgpNqQUmGLPSwGUuEY63WFb7fPY7I687pmMTxC6zS_KoES835pX8R6owBnIVWbJ_kGyxKAzAZ5AvXEHCcF2X8cajRhSXmmYLEcequu2JPAXZDqKIDALxLqRDgNV7j72X-owlbKaiC8U5NdXOQNXOp850kZJCEcN-f_sZsyuy8bXn9Fbm9eT1bsO45nV7JpXUwLoLA8AOe19Ktjr4AqLbapR9Do7o_2CRks-x_1iyQ4EzAG8hVLVe0bpLvBkOQtmk0Chah6ocZK0s5b3dLp29ekQKcJNyl-UBnAaQClFo0BxhRWChMmmCCXEmetI2qjpuYDsVVG21e0-DwhoPqSrEuHpSkfVX_BJdDGx1T3VhW1j6xny_CP77nPISHxnuoZrJ1MT9Ahj7aItnB2i3VGTyEL0ajGCJEbzCCC5hBEuMYIYFRrDECAaM4DJGsMIIXmGkhkYP98O7jqUbalhz4H258DMGts99L048lwWpmwQsdjmJojBNSUKB6sUe8DnmRzFo9gTIDTAbYRMkHg1h6hGqZB8ZP0bYh53PUidOQwaMm3Pmp5HdTGDj86bNbHqCrsR_MzF7Yz5ZF87pr2adoR0DwnNUyWcLfgFUMI8utVC_AYViV1A |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Continuous+human+activity+recognition+using+a+MIMO+radar+for+transitional+motion+analysis&rft.au=Kobak%2C+John&rft.au=Richman%2C+Bennett+J.&rft.au=Washington%2C+LaJuan&rft.au=Hamza%2C+Syed+A.&rft.date=2023-06-14&rft.pub=SPIE&rft.isbn=1510661581&rft.issn=0277-786X&rft.volume=12522&rft.spage=125220D&rft.epage=125220D-8&rft_id=info:doi/10.1117%2F12.2663714&rft.externalDocID=10_1117_12_2663714 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon |