Continuous human activity recognition using a MIMO radar for transitional motion analysis

The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk assessment. In this paper, we examine a multi-antenna radar system that can process radar data returns for multiple individuals in an indoor set...

Full description

Saved in:
Bibliographic Details
Main Authors Kobak, John, Richman, Bennett J., Washington, LaJuan, Hamza, Syed A.
Format Conference Proceeding
LanguageEnglish
Published SPIE 14.06.2023
Online AccessGet full text
ISBN1510661581
9781510661585
ISSN0277-786X
DOI10.1117/12.2663714

Cover

Abstract The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk assessment. In this paper, we examine a multi-antenna radar system that can process radar data returns for multiple individuals in an indoor setting, enabling CHAR for multiple subjects. This requires combining spatial and temporal signal processing techniques through micro-Doppler (MD) analysis and high-resolution receive beamforming. We employ delay and sum beamforming to capture MD signatures at three different directions of observation. As MD images may contain multiple activities, we segment the three MD signatures using an STA/LTA algorithm. MD segmentation ensures that each MD segment represents a single human motion activity. Finally, the segmented MD image is resized and processed through a convolutional neural network (CNN) to classify motion against each MD segment.
AbstractList The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk assessment. In this paper, we examine a multi-antenna radar system that can process radar data returns for multiple individuals in an indoor setting, enabling CHAR for multiple subjects. This requires combining spatial and temporal signal processing techniques through micro-Doppler (MD) analysis and high-resolution receive beamforming. We employ delay and sum beamforming to capture MD signatures at three different directions of observation. As MD images may contain multiple activities, we segment the three MD signatures using an STA/LTA algorithm. MD segmentation ensures that each MD segment represents a single human motion activity. Finally, the segmented MD image is resized and processed through a convolutional neural network (CNN) to classify motion against each MD segment.
Author Richman, Bennett J.
Hamza, Syed A.
Kobak, John
Washington, LaJuan
Author_xml – sequence: 1
  givenname: John
  surname: Kobak
  fullname: Kobak, John
  organization: Widener Univ. (United States)
– sequence: 2
  givenname: Bennett J.
  surname: Richman
  fullname: Richman, Bennett J.
  organization: Widener Univ. (United States)
– sequence: 3
  givenname: LaJuan
  surname: Washington
  fullname: Washington, LaJuan
  organization: Widener Univ. (United States)
– sequence: 4
  givenname: Syed A.
  surname: Hamza
  fullname: Hamza, Syed A.
  organization: Widener Univ. (United States)
BookMark eNotkMFKAzEYhANWsFu9-AQ5C1vzJ9kkPcqittDSi4KelmySrZE2Kcmu0Ld3rT3NHD6GmSnQJMTgELoHMgcA-Qh0ToVgEvgVKqACIgRUCiZoSqiUpVTi4wYVOX8TQlUlF1P0WcfQ-zDEIeOv4aAD1qb3P74_4eRM3AXf-xjwkH3YYY03q80WJ211wl1MuE865DOh9_gQz6ge_Sn7fIuuO73P7u6iM_T-8vxWL8v19nVVP63LDAvSl4xISYQT3FjOtOyYldowB22rug5sRTk3vKKgRWsIV5YJSoHCuMvySo3oDD385-ajd80xReOcHdvmBkjz90oDtLm8wn4BrB9W1g
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.2663714
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Markopoulos, Panos P.
Ouyang, Bing
Papalexakis, Vagelis
Editor_xml – sequence: 1
  givenname: Panos P.
  surname: Markopoulos
  fullname: Markopoulos, Panos P.
  organization: The Univ. of Texas at San Antonio (United States)
– sequence: 2
  givenname: Bing
  surname: Ouyang
  fullname: Ouyang, Bing
  organization: Florida Atlantic Univ. (United States)
– sequence: 3
  givenname: Vagelis
  surname: Papalexakis
  fullname: Papalexakis, Vagelis
  organization: Univ. of California, Riverside (United States)
EndPage 125220D-8
ExternalDocumentID 10_1117_12_2663714
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
UT2
ID FETCH-LOGICAL-s190t-307706e64cd43a7f3d7ac3e1bb8ff1d5244c4521a6bc048d3622121615d458ac3
ISBN 1510661581
9781510661585
ISSN 0277-786X
IngestDate Sat Jul 22 04:23:47 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s190t-307706e64cd43a7f3d7ac3e1bb8ff1d5244c4521a6bc048d3622121615d458ac3
Notes Conference Location: Orlando, Florida, United States
Conference Date: 2023-04-30|2023-05-05
ParticipantIDs spie_proceedings_10_1117_12_2663714
PublicationCentury 2000
PublicationDate 20230614
PublicationDateYYYYMMDD 2023-06-14
PublicationDate_xml – month: 6
  year: 2023
  text: 20230614
  day: 14
PublicationDecade 2020
PublicationYear 2023
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.2317264
Snippet The prompt and accurate recognition of Continuous Human Activity x(CHAR) is critical in identifying and responding to health events, particularly fall risk...
SourceID spie
SourceType Publisher
StartPage 125220D
Title Continuous human activity recognition using a MIMO radar for transitional motion analysis
URI http://www.dx.doi.org/10.1117/12.2663714
Volume 12522
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXPTkA-M7m-iNFLttty1HFA0SURIgwRPZttuEGKuBcpBf7-yDbiMc1EtDN5ulMN_OfjOdB0LXru8mDuHEikgEBgpNqQUmGLPSwGUuEY63WFb7fPY7I687pmMTxC6zS_KoES835pX8R6owBnIVWbJ_kGyxKAzAZ5AvXEHCcF2X8cajRhSXmmYLEcequu2JPAXZDqKIDALxLqRDgNV7j72X-owlbKaiC8U5NdXOQNXOp850kZJCEcN-f_sZsyuy8bXn9Fbm9eT1bsO45nV7JpXUwLoLA8AOe19Ktjr4AqLbapR9Do7o_2CRks-x_1iyQ4EzAG8hVLVe0bpLvBkOQtmk0Chah6ocZK0s5b3dLp29ekQKcJNyl-UBnAaQClFo0BxhRWChMmmCCXEmetI2qjpuYDsVVG21e0-DwhoPqSrEuHpSkfVX_BJdDGx1T3VhW1j6xny_CP77nPISHxnuoZrJ1MT9Ahj7aItnB2i3VGTyEL0ajGCJEbzCCC5hBEuMYIYFRrDECAaM4DJGsMIIXmGkhkYP98O7jqUbalhz4H258DMGts99L048lwWpmwQsdjmJojBNSUKB6sUe8DnmRzFo9gTIDTAbYRMkHg1h6hGqZB8ZP0bYh53PUidOQwaMm3Pmp5HdTGDj86bNbHqCrsR_MzF7Yz5ZF87pr2adoR0DwnNUyWcLfgFUMI8utVC_AYViV1A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Continuous+human+activity+recognition+using+a+MIMO+radar+for+transitional+motion+analysis&rft.au=Kobak%2C+John&rft.au=Richman%2C+Bennett+J.&rft.au=Washington%2C+LaJuan&rft.au=Hamza%2C+Syed+A.&rft.date=2023-06-14&rft.pub=SPIE&rft.isbn=1510661581&rft.issn=0277-786X&rft.volume=12522&rft.spage=125220D&rft.epage=125220D-8&rft_id=info:doi/10.1117%2F12.2663714&rft.externalDocID=10_1117_12_2663714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon