AN IMPLICIT SERIES PRECISE INTEGRATION ALGORITHM FOR STRUCTURAL NONLINEAR DYNAMIC EQUATIONS
Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these algorithms. If the inversion of the matrix doesn't exist or isn't stable, the precision and stability of the algorithms...
Saved in:
| Published in | 固体力学学报(英文版) Vol. 18; no. 1; pp. 70 - 75 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
High Performance Computing Center, Shanghai Jiaotong University, Shanghai 200030, China%School of Civil Engineering, Tsinghua University, Beijing 100084, China
01.03.2005
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0894-9166 |
| DOI | 10.1007/s10338-005-0510-7 |
Cover
| Abstract | Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these algorithms. If the inversion of the matrix doesn't exist or isn't stable, the precision and stability of the algorithms will be affected. An explicit series solution of the state equation has been presented. The solution avoids calculating the inversion of a matrix and its precision can be easily controlled. In this paper, an implicit series solution of nonlinear dynamic equations is presented.The algorithm is more precise and stable than the explicit series solution and isn't sensitive to the time-step. Finally, a numerical example is presented to demonstrate the effectiveness of the algorithm. |
|---|---|
| AbstractList | Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these algorithms. If the inversion of the matrix doesn't exist or isn't stable, the precision and stability of the algorithms will be affected. An explicit series solution of the state equation has been presented. The solution avoids calculating the inversion of a matrix and its precision can be easily controlled. In this paper, an implicit series solution of nonlinear dynamic equations is presented.The algorithm is more precise and stable than the explicit series solution and isn't sensitive to the time-step. Finally, a numerical example is presented to demonstrate the effectiveness of the algorithm. |
| Author | Li Yuanyin Wang Yuanqing Jin Xianlong |
| AuthorAffiliation | High Performance Computing Center, Shanghai Jiaotong University, Shanghai 200030, China%School of Civil Engineering, Tsinghua University, Beijing 100084, China |
| AuthorAffiliation_xml | – name: High Performance Computing Center, Shanghai Jiaotong University, Shanghai 200030, China%School of Civil Engineering, Tsinghua University, Beijing 100084, China |
| Author_xml | – sequence: 1 fullname: Li Yuanyin – sequence: 2 fullname: Jin Xianlong – sequence: 3 fullname: Wang Yuanqing |
| BookMark | eNotjTFPwzAYRD0UiRb4AWxeGQyf7SR2Riu4raXUKU4yIIbKiZ1KVZVKpIj-fCpAN9zy7t0CzcbTGBF6pPBMAcTLRIFzSQBSAikFImZoDjJPSE6z7BYtpukAwIBLNkcfymKz2ZamMA2utTO6xlunC1NrbGyjV041prJYlavKmWa9wcvK4bpxbdG0TpXYVrY0ViuHX9-t2pgC67f2d1Pfo5vBH6f48N93qF3qpliTslqZQpVkojI_kyhil4qQ-r4Tvc9iFmUuOBMgA-sCD4PkQ0iY9Ckk0CdpDKGnIjLJIgMvBn6Hnv68334c_LjfHU5fn-P1cbc_Hy-XbnflIAV6Df8Bs4JP8A |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s10338-005-0510-7 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 75 |
| ExternalDocumentID | gtlxxb_e200501010 |
| GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (60273048 and 60174023) |
| GroupedDBID | --K --M -01 -0A -SA -S~ .86 .~1 0R~ 188 1B1 1SB 1~. 1~5 23M 2B. 4.4 406 457 4A8 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92E 92I 92M 93N 9D9 9DA AACDK AAEDT AAEDW AAHNG AAIAL AAIKJ AAJBT AAKOC AALRI AAOAW AASML AATNV AATTM AAUYE AAXKI AAXUO AAYWO ABAKF ABBRH ABDBE ABDZT ABECU ABFTV ABJNI ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABWVN ABXDB ACAOD ACDAQ ACDTI ACGFS ACHSB ACNNM ACOKC ACPIV ACRLP ACRPL ACZOJ ADBBV ADEZE ADIMF ADKNI ADMUD ADNMO ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFQL AEIPS AEKER AEMSY AENEX AESKC AFBBN AFDZB AFLOW AFOHR AFQWF AFUIB AFXIZ AGCQF AGDGC AGHFR AGJBK AGMZJ AGQEE AGRNS AGRTI AGUBO AGYEJ AHJVU AHPBZ AIAKS AIEXJ AIGIU AIIUN AIKHN AILAN AITGF AITUG AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMXSW AMYLF ANKPU ATHPR AXJTR AXYYD AYFIA BGNMA BKOJK BLXMC CAJEA CCEZO CCVFK CHBEP CS3 CW9 DPUIP EBLON EBS EFJIC EJD EP2 EP3 FA0 FDB FEDTE FIGPU FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HF~ HVGLF HZ~ IKXTQ IWAJR IXE J-C J1W JJJVA JUIAU JZLTJ KDC KOM KOV LAS LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O-L O9- O9J OAUVE OZT P-8 P-9 P2P PC. PSX PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPX RSV RT1 S1Z S27 SDF SES SJYHP SNE SNPRN SOHCF SOJ SPC SRMVM SSH SSLCW SST SSZ STPWE T13 T5K T8Q TCJ TGP U1F U1G U2A U5A U5K UGNYK UOJIU UTJUX UZ4 VEKWB VFIZW ZMTXR ~LB |
| ID | FETCH-LOGICAL-s189t-e7eb57d5acb7ca6e6e89732708d2bd3df83fd428a5040c45eddc17e282e20a7f3 |
| ISSN | 0894-9166 |
| IngestDate | Thu May 29 04:37:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | numerical integration implicit series solution exponential matrix nonlinear dynamic system precise integration method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s189t-e7eb57d5acb7ca6e6e89732708d2bd3df83fd428a5040c45eddc17e282e20a7f3 |
| PageCount | 6 |
| ParticipantIDs | wanfang_journals_gtlxxb_e200501010 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-03-01 |
| PublicationDateYYYYMMDD | 2005-03-01 |
| PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | 固体力学学报(英文版) |
| PublicationTitle_FL | ACTA MECHANICA SOLIDA SINICA |
| PublicationYear | 2005 |
| Publisher | High Performance Computing Center, Shanghai Jiaotong University, Shanghai 200030, China%School of Civil Engineering, Tsinghua University, Beijing 100084, China |
| Publisher_xml | – name: High Performance Computing Center, Shanghai Jiaotong University, Shanghai 200030, China%School of Civil Engineering, Tsinghua University, Beijing 100084, China |
| SSID | ssj0020382 |
| Score | 1.6313766 |
| Snippet | Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 70 |
| Title | AN IMPLICIT SERIES PRECISE INTEGRATION ALGORITHM FOR STRUCTURAL NONLINEAR DYNAMIC EQUATIONS |
| URI | https://d.wanfangdata.com.cn/periodical/gtlxxb-e200501010 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) issn: 0894-9166 databaseCode: U2A dateStart: 20030301 customDbUrl: isFulltext: true dateEnd: 20050331 titleUrlDefault: http://www.springerlink.com/journals/ omitProxy: true ssIdentifier: ssj0020382 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELfa7mV7mPapfQtN8xNiSgBj8-gktCFK6JQPKdUeKgimZYqItpKp2l-_O0MIXfbQ7QVZtuOgu599H9z5CPnEXAcU27hrcVtllsvszEqYBy0ep1mcJKDBYu7wJPKGC3e0ZMujY9aKWtqWyefVr7_mlfwPV6EP-IpZsv_A2WZR6IA28BeewGF43ovHMjLDyZdx2A_n5gwssmCGFO2HMywkPw_OKgeUKcdn59NwPpyYYPKBDjhd9OeLqRyb0Xk0DqNATs3BRSSRIQFouDqxuK200oBRv0d7kgYu7Q2o72CPkNgJDTmg0ms1PBySjAantNenQtBAUAE_7-KQD6OcBpwKXw9VcxpvxDg3L7ZwPuUNZkd5YS4Bw-tNLWO197-40vO-7wTvzm_B9oFbGmkYxoJR_k1yRFXFQgc74G2kVdUxdJpfx7k5yuNNicWX9uEqd8ZtbdtVUQo5JtOx-hJTjGnJf-br9vWOeiegJ-Z6G_-xYE_l3_AV8KuHcJv12oey74KAqCrFHEqQZqdU4qCqiVIrFlWFmAOR1dmlcDsgejSd4Ji0-F4-N1GTV-X69ja5VEhNvBqwc0we2CDMsGLJwpaNn6Hj6BppzavuPuZXGaN3_0bnqhUZkLGlVs2fkMe1PWTICtxPyZEqnpFHLTI-J19lZOxgblQwN2qYGy2YGw3MDYC5sYe50cDcqGFuNDB_QRanwbw_tOqaINZNV_ilpbhKGE9ZvEr4KvaUpwTeN8U7IrWT1Ekz4WQpmNQxA-m0cplK01WXK1vYQLaYZ85LclJsCvWKGIkLM2yuBHNRXXBE7PqgsGYCjzXhe6_Jx5o0l_Wev7k8YMGb-0x6Sx7ud8A7clL-2Kr3oMuWyQfNud9oGoXP |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AN+IMPLICIT+SERIES+PRECISE+INTEGRATION+ALGORITHM+FOR+STRUCTURAL+NONLINEAR+DYNAMIC+EQUATIONS&rft.jtitle=%E5%9B%BA%E4%BD%93%E5%8A%9B%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Li+Yuanyin&rft.au=Jin+Xianlong&rft.au=Wang+Yuanqing&rft.date=2005-03-01&rft.pub=High+Performance+Computing+Center%2C+Shanghai+Jiaotong+University%2C+Shanghai+200030%2C+China%25School+of+Civil+Engineering%2C+Tsinghua+University%2C+Beijing+100084%2C+China&rft.issn=0894-9166&rft.volume=18&rft.issue=1&rft.spage=70&rft.epage=75&rft_id=info:doi/10.1007%2Fs10338-005-0510-7&rft.externalDocID=gtlxxb_e200501010 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgtlxxb-e%2Fgtlxxb-e.jpg |