HMM Based Action Recognition with Projection Histogram Features

Hidden Markov Models (HMM) have been widely used for action recognition, since they allow to easily model the temporal evolution of a single or a set of numeric features extracted from the data. The selection of the feature set and the related emission probability function are the key issues to be d...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science pp. 286 - 293
Main Authors Vezzani, Roberto, Baltieri, Davide, Cucchiara, Rita
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2010
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783642177101
3642177107
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-642-17711-8_29

Cover

Abstract Hidden Markov Models (HMM) have been widely used for action recognition, since they allow to easily model the temporal evolution of a single or a set of numeric features extracted from the data. The selection of the feature set and the related emission probability function are the key issues to be defined. In particular, if the training set is not sufficiently large, a manual or automatic feature selection and reduction is mandatory. In this paper we propose to model the emission probability function as a Mixture of Gaussian and the feature set is obtained from the projection histograms of the foreground mask. The projection histograms contain the number of moving pixel for each row and for each column of the frame and they provide sufficient information to infer the instantaneous posture of the person. Then, the HMM framework recovers the temporal evolution of the postures recognizing in such a manner the global action. The proposed method have been successfully tested on the UT-Tower and on the Weizmann Datasets.
AbstractList Hidden Markov Models (HMM) have been widely used for action recognition, since they allow to easily model the temporal evolution of a single or a set of numeric features extracted from the data. The selection of the feature set and the related emission probability function are the key issues to be defined. In particular, if the training set is not sufficiently large, a manual or automatic feature selection and reduction is mandatory. In this paper we propose to model the emission probability function as a Mixture of Gaussian and the feature set is obtained from the projection histograms of the foreground mask. The projection histograms contain the number of moving pixel for each row and for each column of the frame and they provide sufficient information to infer the instantaneous posture of the person. Then, the HMM framework recovers the temporal evolution of the postures recognizing in such a manner the global action. The proposed method have been successfully tested on the UT-Tower and on the Weizmann Datasets.
Author Baltieri, Davide
Vezzani, Roberto
Cucchiara, Rita
Author_xml – sequence: 1
  givenname: Roberto
  surname: Vezzani
  fullname: Vezzani, Roberto
  email: roberto.vezzani@unimore.it
  organization: Dipartimento di Ingegneria dell’Informazione, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 2
  givenname: Davide
  surname: Baltieri
  fullname: Baltieri, Davide
  email: davide.baltieri@unimore.it
  organization: Dipartimento di Ingegneria dell’Informazione, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 3
  givenname: Rita
  surname: Cucchiara
  fullname: Cucchiara, Rita
  email: rita.cucchiara@unimore.it
  organization: Dipartimento di Ingegneria dell’Informazione, University of Modena and Reggio Emilia, Modena, Italy
BookMark eNp9UE1PAjEQrYqJgPwDD_sHqtPO7rY9GSQgJhCN0XPT7RZchC3ZLiH8ewvo1bnM5H1M8l6PdGpfO0LuGNwzAPGghKRI85RTJgRjVGquLkgPI3ICskvSZXkkEFN1RQZR_8cB65AuIHCqRIo3ZBDCCuKkIs85dMnjdD5PnkxwZTK0beXr5N1Zv6yr072v2q_krfErd-amVWj9sjGbZOJMu2tcuCXXC7MObvC7--RzMv4YTens9fllNJzRwDKlaFpmVkFujJHICpMKaTmW0oGVkNtCMWVFxiU6AW5RGiMcFinGCLBAW4gC-yQ7_93VW3PYm_Vab5tqY5qDZqCPLemYWqOOufWpFH1sKfr42ReivF66Rhfef4f_TT8aFWZ1
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2010
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2010
DBID ABOKW
UNPAY
DOI 10.1007/978-3-642-17711-8_29
DatabaseName Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3642177115
9783642177118
EISSN 1611-3349
Editor Ünay, Devrim
Çataltepe, Zehra
Aksoy, Selim
Editor_xml – sequence: 1
  givenname: Devrim
  surname: Ünay
  fullname: Ünay, Devrim
  email: devrim.unay@bahcesehir.edu.tr
– sequence: 2
  givenname: Zehra
  surname: Çataltepe
  fullname: Çataltepe, Zehra
  email: cataltepe@itu.edu.tr
– sequence: 3
  givenname: Selim
  surname: Aksoy
  fullname: Aksoy, Selim
  email: saksoy@cs.bilkent.edu.tr
EndPage 293
ExternalDocumentID oai:iris.unimore.it:11380/648392
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ABOKW
UNPAY
ID FETCH-LOGICAL-s1599-4d5c906aaa831ba478c23d8e0c806cb919c75283e70efdaa7e3b434210f3cb7b3
IEDL.DBID UNPAY
ISBN 9783642177101
3642177107
ISSN 0302-9743
1611-3349
IngestDate Sun Oct 26 03:43:09 EDT 2025
Wed Sep 17 03:11:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s1599-4d5c906aaa831ba478c23d8e0c806cb919c75283e70efdaa7e3b434210f3cb7b3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11380/648392
PageCount 8
ParticipantIDs unpaywall_primary_10_1007_978_3_642_17711_8_29
springer_books_10_1007_978_3_642_17711_8_29
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle ICPR 2010 Contests, Istanbul, Turkey, August 23-26, 2010, Contest Reports
PublicationTitle Lecture notes in computer science
PublicationYear 2010
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000476620
ssj0002792
Score 1.4584062
Snippet Hidden Markov Models (HMM) have been widely used for action recognition, since they allow to easily model the temporal evolution of a single or a set of...
SourceID unpaywall
springer
SourceType Open Access Repository
Publisher
StartPage 286
SubjectTerms Action Classification
HMM
Projection Histograms
Title HMM Based Action Recognition with Projection Histogram Features
URI http://link.springer.com/10.1007/978-3-642-17711-8_29
http://hdl.handle.net/11380/648392
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qexA91E-saNmDN0lNspvN5iS1tJRiSxEr9bTsVy6WWGyD6K93N2mkKAjesoSFZSbhvdmZeQNwpWkUSGK0l1BNPKJl6jERGs_QVFNtTKIKserxhA5nZDSP5jWopq79kBcIAsz8G0ociu9Ag0aWb9ehMZtMu89leiD0kk0VPXV6fJgkW_1xZerfMmwviGP7mvGCSVYZzz3YzbOl-HgXi8UWqAya0Ktac8pakpdOvpYd9flbqfGP8x7AvmtXQK6PwJroEGomO4JmNawBbf7dY7gdjsfozmKWRt2ilwE9VLVD9tldx6JpeSvj1oV6iCvcQo4j5jYmP4HZoP_YG3qb6QneylKUxNo9UolPhRAMB1KQmKkQa2Z8xXyqZBIkKnbKLib2TaqFiA2WBBMbAqZYyVjiU6hnr5k5AxSGRgRSMh1bMJc6FVSFWgXUAp1FfBq24LqyKXexwYpXYsjWAxxz6wFeeIA7D7Sg8212viw1Nf7ccP7fDRdQX7_l5tLShbVsQ6PbH90_tTffzReI3rpZ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qexA91CdWVPbgTVKz2c0mOUktliK0FLFQT2FfuVhqsQ2iv97ZPKQoFLxlCQvLTML3zc7MNwDXRoRUcWu8RBjucaMyL5aB9azIjDDWJroQqx6NxXDKH2fhrAH11LVf8gKUsti_Fdyh-A60RIh8uwmt6XjSeynTA4GXVFX0wunxMZ5s9MeVqX9k2B6NInwdpwWTrDOee7CbL5by80PO5xugMmhDv27NKWtJXrv5WnX111-lxi3nPYB9165AXB8BmugQGnZxBO16WAOp_t1juBuORuQeMcuQXtHLQJ7q2iF8dtexZFLeyrh1oR7iCreI44g5xuQnMB08PPeHXjU9wVshRUnQ7qFOfCGljBlVkkexDpiJra9jX2iV0ERHTtnFRr7NjJSRZYozjiFgxrSKFDuF5uJtYc-ABIGVVKnYRAjmymRS6MBoKhDoEPFF0IGb2qapiw1WaS2GjB5IWYoeSAsPpM4DHej-mD1dlpoaWzec_3fDBTTX77m9RLqwVlfV9_INvgm4xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recognizing+Patterns+in+Signals%2C+Speech%2C+Images+and+Videos&rft.au=Vezzani%2C+Roberto&rft.au=Baltieri%2C+Davide&rft.au=Cucchiara%2C+Rita&rft.atitle=HMM+Based+Action+Recognition+with+Projection+Histogram+Features&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2010-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642177101&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=286&rft.epage=293&rft_id=info:doi/10.1007%2F978-3-642-17711-8_29
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon