Variational AutoEncoder-Based Anomaly Detection Scheme for Load Forecasting

Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids consist of diverse systems such as energy management system and renewable energy system. In order to use such systems efficiently, accurate load f...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Intelligence and Applied Cognitive Computing pp. 833 - 839
Main Authors Park, Sungwoo, Jung, Seungmin, Hwang, Eenjun, Rho, Seungmin
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2021
SeriesTransactions on Computational Science and Computational Intelligence
Subjects
Online AccessGet full text
ISBN9783030702953
3030702952
ISSN2569-7072
2569-7080
DOI10.1007/978-3-030-70296-0_62

Cover

Abstract Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids consist of diverse systems such as energy management system and renewable energy system. In order to use such systems efficiently, accurate load forecasting should be carried out. However, if there are many anomalies in the data used to construct the predictive model, the accuracy of the prediction will inevitably decrease. Many statistical methods proposed for anomaly detection have had difficulty in reflecting seasonality. Hence, in this chapter, we propose VAE (Variational AutoEncoder)-based scheme for accurate anomaly detection. We construct diverse artificial neural network-based load forecasting models using different combinations of anomaly detection and data interpolation, and then compare their performance. Experimental results show that using VAE-based anomaly detection with a random forest-based data interpolation shows the best performance.
AbstractList Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids consist of diverse systems such as energy management system and renewable energy system. In order to use such systems efficiently, accurate load forecasting should be carried out. However, if there are many anomalies in the data used to construct the predictive model, the accuracy of the prediction will inevitably decrease. Many statistical methods proposed for anomaly detection have had difficulty in reflecting seasonality. Hence, in this chapter, we propose VAE (Variational AutoEncoder)-based scheme for accurate anomaly detection. We construct diverse artificial neural network-based load forecasting models using different combinations of anomaly detection and data interpolation, and then compare their performance. Experimental results show that using VAE-based anomaly detection with a random forest-based data interpolation shows the best performance.
Author Park, Sungwoo
Rho, Seungmin
Hwang, Eenjun
Jung, Seungmin
Author_xml – sequence: 1
  givenname: Sungwoo
  surname: Park
  fullname: Park, Sungwoo
– sequence: 2
  givenname: Seungmin
  surname: Jung
  fullname: Jung, Seungmin
– sequence: 3
  givenname: Eenjun
  surname: Hwang
  fullname: Hwang, Eenjun
  email: ehwang04@korea.ac.kr
– sequence: 4
  givenname: Seungmin
  surname: Rho
  fullname: Rho, Seungmin
BookMark eNpVkElOAzEQRQ0EiRByAxa-gKE8tIdlCAkgIrFg2FrVbgcCSRu1m0VujxMQEquS3v-qUr1TMmhTGwk553DBAcylM5ZJBhKYAeE0A6_FARkXLAvcMzgkQ1FpVxoWjv5llRz8ZUackHHO7wAgDLfa2CG5f8Fuhf0qtbimk68-zdqQmtixK8yxoZM2bXC9pdexj2HXoo_hLW4iXaaOLhI2dJ66GDD3q_b1jBwvcZ3j-HeOyPN89jS9ZYuHm7vpZMEyF7ZnFp1WCFrFSgUQutaNqDlo5BydUyIIiTqqSkmjZFQNb3iwtgDrBPBlLUdE_OzNn105Gztfp_SRPQe_M-bL-176IsDv7fidMfkN4qFaBw
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DOI 10.1007/978-3-030-70296-0_62
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9783030702960
3030702960
EISSN 2569-7080
Editor Ferens, Ken
Olivas Varela, José Angel
Tinetti, Fernando G.
Arabnia, Hamid R.
Kozerenko, Elena B.
de la Fuente, David
Editor_xml – sequence: 1
  givenname: Hamid R.
  surname: Arabnia
  fullname: Arabnia, Hamid R.
  email: hra@uga.edu
– sequence: 2
  givenname: Ken
  surname: Ferens
  fullname: Ferens, Ken
  email: ken.ferens@ad.umanitoba.ca
– sequence: 3
  givenname: David
  surname: de la Fuente
  fullname: de la Fuente, David
  email: david@uniovi.es
– sequence: 4
  givenname: Elena B.
  surname: Kozerenko
  fullname: Kozerenko, Elena B.
  email: elenakozerenko@yahoo.com
– sequence: 5
  givenname: José Angel
  surname: Olivas Varela
  fullname: Olivas Varela, José Angel
  email: joseangel.olivas@uclm.es
– sequence: 6
  givenname: Fernando G.
  surname: Tinetti
  fullname: Tinetti, Fernando G.
  email: fernando@info.unlp.edu.ar
EndPage 839
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s128t-8a964a064e54c026b6d2b106a11a9942c23a6e4543743e4d1d1c88e4589201fb3
ISBN 9783030702953
3030702952
ISSN 2569-7072
IngestDate Tue Jul 29 20:17:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s128t-8a964a064e54c026b6d2b106a11a9942c23a6e4543743e4d1d1c88e4589201fb3
PageCount 7
ParticipantIDs springer_books_10_1007_978_3_030_70296_0_62
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Transactions on Computational Science and Computational Intelligence
PublicationSeriesTitleAlternate Transactions Computational Science Computational Intelligence
PublicationSubtitle Proceedings from ICAI’20 and ACC’20
PublicationTitle Advances in Artificial Intelligence and Applied Cognitive Computing
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Arabnia, Hamid
RelatedPersons_xml – sequence: 1
  givenname: Hamid
  surname: Arabnia
  fullname: Arabnia, Hamid
SSID ssj0002718678
Score 1.6320299
Snippet Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids...
SourceID springer
SourceType Publisher
StartPage 833
SubjectTerms Anomaly detection
Artificial neural network
Load forecasting
Variational autoencoder
Title Variational AutoEncoder-Based Anomaly Detection Scheme for Load Forecasting
URI http://link.springer.com/10.1007/978-3-030-70296-0_62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btswkHDdpc2SvtCmacGhW8DAlCiaHN3AhZGmXfJANoGUmD5QS4AtI0g-tV_To06UaTtLuggCJZinu_O9eA9CPmkJOp1Ly4xzChwUpZkep87XyoDCT4WzbTbht-9ydilOr7PrweBvlLW0auxxcf9gXcn_UBXWgK6-SvYRlO1_FBbgHugLV6AwXLeM380wK6YX4-l9m886WbQpP9g4I-qx6aPiwc486ROFcJJD0Fld6TOm6FQ_buu6z6rpBMG5g5v5r56NZrddkHnqqt-rdSnZz3r3bYT1CjzyEHWcrJp6WvlS-gX7DDoUIKzquflzB7KvcTi5_BxYaY7tyM9qUx75AaKFWfYwe-y6JSparMxoTz3ww8JGQWx5JGw-iXEUhz0SvhX2CGHPrcDpOna34SenrWhLNPYlRvEKtp5m4xEODjp28RrOlupEusJGHcE6wNZLO4onzjWBzZjfTbJR7s2DJwDAkDydTE_Prvr4XzL2rQTbgYkBEF96FABNsDnUGvCo7POhXXYO8lv76GKf7PmaGeqLWQBPL8jAVS_J86jX5SvyNeIBusMDtOMB2vMARR6gwAPU8wCNeOA1ufwyvTiZsW6SB1uC_dMwZbQUBqxfl4kCvH4ry8TykTScG61FUiSpkU5kIgWD1omSl7xQChaUBgP1xqZvyLCqK_eWUM6t8TMYCquUgCfWJEZlsjQ3JgNvu3hHjgIicv_fXOahMTegLU9zQFveoi33aDt41NvvybM1Kx6SYbNYuQ9gkzb2Y0fef-RfiEg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Park%2C+Sungwoo&rft.au=Jung%2C+Seungmin&rft.au=Hwang%2C+Eenjun&rft.au=Rho%2C+Seungmin&rft.atitle=Variational+AutoEncoder-Based+Anomaly+Detection+Scheme+for+Load+Forecasting&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=833&rft.epage=839&rft_id=info:doi/10.1007%2F978-3-030-70296-0_62
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon