Variational AutoEncoder-Based Anomaly Detection Scheme for Load Forecasting
Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids consist of diverse systems such as energy management system and renewable energy system. In order to use such systems efficiently, accurate load f...
Saved in:
| Published in | Advances in Artificial Intelligence and Applied Cognitive Computing pp. 833 - 839 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Cham
Springer International Publishing
2021
|
| Series | Transactions on Computational Science and Computational Intelligence |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030702953 3030702952 |
| ISSN | 2569-7072 2569-7080 |
| DOI | 10.1007/978-3-030-70296-0_62 |
Cover
| Abstract | Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids consist of diverse systems such as energy management system and renewable energy system. In order to use such systems efficiently, accurate load forecasting should be carried out. However, if there are many anomalies in the data used to construct the predictive model, the accuracy of the prediction will inevitably decrease. Many statistical methods proposed for anomaly detection have had difficulty in reflecting seasonality. Hence, in this chapter, we propose VAE (Variational AutoEncoder)-based scheme for accurate anomaly detection. We construct diverse artificial neural network-based load forecasting models using different combinations of anomaly detection and data interpolation, and then compare their performance. Experimental results show that using VAE-based anomaly detection with a random forest-based data interpolation shows the best performance. |
|---|---|
| AbstractList | Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids consist of diverse systems such as energy management system and renewable energy system. In order to use such systems efficiently, accurate load forecasting should be carried out. However, if there are many anomalies in the data used to construct the predictive model, the accuracy of the prediction will inevitably decrease. Many statistical methods proposed for anomaly detection have had difficulty in reflecting seasonality. Hence, in this chapter, we propose VAE (Variational AutoEncoder)-based scheme for accurate anomaly detection. We construct diverse artificial neural network-based load forecasting models using different combinations of anomaly detection and data interpolation, and then compare their performance. Experimental results show that using VAE-based anomaly detection with a random forest-based data interpolation shows the best performance. |
| Author | Park, Sungwoo Rho, Seungmin Hwang, Eenjun Jung, Seungmin |
| Author_xml | – sequence: 1 givenname: Sungwoo surname: Park fullname: Park, Sungwoo – sequence: 2 givenname: Seungmin surname: Jung fullname: Jung, Seungmin – sequence: 3 givenname: Eenjun surname: Hwang fullname: Hwang, Eenjun email: ehwang04@korea.ac.kr – sequence: 4 givenname: Seungmin surname: Rho fullname: Rho, Seungmin |
| BookMark | eNpVkElOAzEQRQ0EiRByAxa-gKE8tIdlCAkgIrFg2FrVbgcCSRu1m0VujxMQEquS3v-qUr1TMmhTGwk553DBAcylM5ZJBhKYAeE0A6_FARkXLAvcMzgkQ1FpVxoWjv5llRz8ZUackHHO7wAgDLfa2CG5f8Fuhf0qtbimk68-zdqQmtixK8yxoZM2bXC9pdexj2HXoo_hLW4iXaaOLhI2dJ66GDD3q_b1jBwvcZ3j-HeOyPN89jS9ZYuHm7vpZMEyF7ZnFp1WCFrFSgUQutaNqDlo5BydUyIIiTqqSkmjZFQNb3iwtgDrBPBlLUdE_OzNn105Gztfp_SRPQe_M-bL-176IsDv7fidMfkN4qFaBw |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2021 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
| DOI | 10.1007/978-3-030-70296-0_62 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9783030702960 3030702960 |
| EISSN | 2569-7080 |
| Editor | Ferens, Ken Olivas Varela, José Angel Tinetti, Fernando G. Arabnia, Hamid R. Kozerenko, Elena B. de la Fuente, David |
| Editor_xml | – sequence: 1 givenname: Hamid R. surname: Arabnia fullname: Arabnia, Hamid R. email: hra@uga.edu – sequence: 2 givenname: Ken surname: Ferens fullname: Ferens, Ken email: ken.ferens@ad.umanitoba.ca – sequence: 3 givenname: David surname: de la Fuente fullname: de la Fuente, David email: david@uniovi.es – sequence: 4 givenname: Elena B. surname: Kozerenko fullname: Kozerenko, Elena B. email: elenakozerenko@yahoo.com – sequence: 5 givenname: José Angel surname: Olivas Varela fullname: Olivas Varela, José Angel email: joseangel.olivas@uclm.es – sequence: 6 givenname: Fernando G. surname: Tinetti fullname: Tinetti, Fernando G. email: fernando@info.unlp.edu.ar |
| EndPage | 839 |
| GroupedDBID | 38. AABBV AABLV ABLLD ABNDO ACWLQ AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY I4C IEZ OCUHQ ORHYB SBO TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 |
| ID | FETCH-LOGICAL-s128t-8a964a064e54c026b6d2b106a11a9942c23a6e4543743e4d1d1c88e4589201fb3 |
| ISBN | 9783030702953 3030702952 |
| ISSN | 2569-7072 |
| IngestDate | Tue Jul 29 20:17:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s128t-8a964a064e54c026b6d2b106a11a9942c23a6e4543743e4d1d1c88e4589201fb3 |
| PageCount | 7 |
| ParticipantIDs | springer_books_10_1007_978_3_030_70296_0_62 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSeriesTitle | Transactions on Computational Science and Computational Intelligence |
| PublicationSeriesTitleAlternate | Transactions Computational Science Computational Intelligence |
| PublicationSubtitle | Proceedings from ICAI’20 and ACC’20 |
| PublicationTitle | Advances in Artificial Intelligence and Applied Cognitive Computing |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| RelatedPersons | Arabnia, Hamid |
| RelatedPersons_xml | – sequence: 1 givenname: Hamid surname: Arabnia fullname: Arabnia, Hamid |
| SSID | ssj0002718678 |
| Score | 1.6320299 |
| Snippet | Smart grids can optimize their energy management by analyzing data collected from all processes of power utilization in smart cities. Typical smart grids... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 833 |
| SubjectTerms | Anomaly detection Artificial neural network Load forecasting Variational autoencoder |
| Title | Variational AutoEncoder-Based Anomaly Detection Scheme for Load Forecasting |
| URI | http://link.springer.com/10.1007/978-3-030-70296-0_62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btswkHDdpc2SvtCmacGhW8DAlCiaHN3AhZGmXfJANoGUmD5QS4AtI0g-tV_To06UaTtLuggCJZinu_O9eA9CPmkJOp1Ly4xzChwUpZkep87XyoDCT4WzbTbht-9ydilOr7PrweBvlLW0auxxcf9gXcn_UBXWgK6-SvYRlO1_FBbgHugLV6AwXLeM380wK6YX4-l9m886WbQpP9g4I-qx6aPiwc486ROFcJJD0Fld6TOm6FQ_buu6z6rpBMG5g5v5r56NZrddkHnqqt-rdSnZz3r3bYT1CjzyEHWcrJp6WvlS-gX7DDoUIKzquflzB7KvcTi5_BxYaY7tyM9qUx75AaKFWfYwe-y6JSparMxoTz3ww8JGQWx5JGw-iXEUhz0SvhX2CGHPrcDpOna34SenrWhLNPYlRvEKtp5m4xEODjp28RrOlupEusJGHcE6wNZLO4onzjWBzZjfTbJR7s2DJwDAkDydTE_Prvr4XzL2rQTbgYkBEF96FABNsDnUGvCo7POhXXYO8lv76GKf7PmaGeqLWQBPL8jAVS_J86jX5SvyNeIBusMDtOMB2vMARR6gwAPU8wCNeOA1ufwyvTiZsW6SB1uC_dMwZbQUBqxfl4kCvH4ry8TykTScG61FUiSpkU5kIgWD1omSl7xQChaUBgP1xqZvyLCqK_eWUM6t8TMYCquUgCfWJEZlsjQ3JgNvu3hHjgIicv_fXOahMTegLU9zQFveoi33aDt41NvvybM1Kx6SYbNYuQ9gkzb2Y0fef-RfiEg |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Park%2C+Sungwoo&rft.au=Jung%2C+Seungmin&rft.au=Hwang%2C+Eenjun&rft.au=Rho%2C+Seungmin&rft.atitle=Variational+AutoEncoder-Based+Anomaly+Detection+Scheme+for+Load+Forecasting&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=833&rft.epage=839&rft_id=info:doi/10.1007%2F978-3-030-70296-0_62 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon |