Growing Artificial Neural Networks

Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We propose an algorithm, Artificial Neurogenesis (ANG), that grows rather than prunes the network and enables neural networks to be trained and e...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Intelligence and Applied Cognitive Computing pp. 409 - 423
Main Authors Mixter, John, Akoglu, Ali
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2021
SeriesTransactions on Computational Science and Computational Intelligence
Subjects
Online AccessGet full text
ISBN9783030702953
3030702952
ISSN2569-7072
2569-7080
DOI10.1007/978-3-030-70296-0_31

Cover

Abstract Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We propose an algorithm, Artificial Neurogenesis (ANG), that grows rather than prunes the network and enables neural networks to be trained and executed in low SWaP embedded hardware. ANG accomplishes this by using the training data to determine critical connections between layers before the actual training takes place. Our experiments use a modified LeNet-5 as a baseline neural network that achieves a test accuracy of 98.74% using a total of 61,160 weights. An ANG grown network achieves a test accuracy of 98.80% with only 21,211 weights.
AbstractList Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We propose an algorithm, Artificial Neurogenesis (ANG), that grows rather than prunes the network and enables neural networks to be trained and executed in low SWaP embedded hardware. ANG accomplishes this by using the training data to determine critical connections between layers before the actual training takes place. Our experiments use a modified LeNet-5 as a baseline neural network that achieves a test accuracy of 98.74% using a total of 61,160 weights. An ANG grown network achieves a test accuracy of 98.80% with only 21,211 weights.
Author Akoglu, Ali
Mixter, John
Author_xml – sequence: 1
  givenname: John
  surname: Mixter
  fullname: Mixter, John
  email: jmixter6011@email.arizona.edu
– sequence: 2
  givenname: Ali
  surname: Akoglu
  fullname: Akoglu, Ali
BookMark eNpVkEtLAzEUhaNWsNb5By6K-9ib3MljlqVoFUrd6DqkecjYMiPJSP--6SiCqwPfOVzuOddk0vVdIOSWwT0DUItGaYoUEKgC3kgKBtkZqQrGAkcG52TKhWxKQsPFP0_g5M9T_IpUOX8AAFdMS6Wn5G6d-mPbvc-XaWhj61p7mG_DVxplOPZpn2_IZbSHHKpfnZG3x4fX1RPdvKyfV8sNzYzrgcogbLNrogTnWc0RNVpnvY1CeO-R1VbJiI45zrkXQSsd6iC01YFFFCrgjPCfu_kzlY9CMru-32fDwJyGMKWVQVN6mbG0OQ2B37aiTKU
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DOI 10.1007/978-3-030-70296-0_31
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9783030702960
3030702960
EISSN 2569-7080
Editor Ferens, Ken
Olivas Varela, José Angel
Tinetti, Fernando G.
Arabnia, Hamid R.
Kozerenko, Elena B.
de la Fuente, David
Editor_xml – sequence: 1
  givenname: Hamid R.
  surname: Arabnia
  fullname: Arabnia, Hamid R.
  email: hra@uga.edu
– sequence: 2
  givenname: Ken
  surname: Ferens
  fullname: Ferens, Ken
  email: ken.ferens@ad.umanitoba.ca
– sequence: 3
  givenname: David
  surname: de la Fuente
  fullname: de la Fuente, David
  email: david@uniovi.es
– sequence: 4
  givenname: Elena B.
  surname: Kozerenko
  fullname: Kozerenko, Elena B.
  email: elenakozerenko@yahoo.com
– sequence: 5
  givenname: José Angel
  surname: Olivas Varela
  fullname: Olivas Varela, José Angel
  email: joseangel.olivas@uclm.es
– sequence: 6
  givenname: Fernando G.
  surname: Tinetti
  fullname: Tinetti, Fernando G.
  email: fernando@info.unlp.edu.ar
EndPage 423
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s128t-6e5a9b9f60cd1423383acadaf55ddd314a76f3c1c222d5e878e4e58a8e1f357e3
ISBN 9783030702953
3030702952
ISSN 2569-7072
IngestDate Tue Jul 29 20:17:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s128t-6e5a9b9f60cd1423383acadaf55ddd314a76f3c1c222d5e878e4e58a8e1f357e3
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_030_70296_0_31
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Transactions on Computational Science and Computational Intelligence
PublicationSeriesTitleAlternate Transactions Computational Science Computational Intelligence
PublicationSubtitle Proceedings from ICAI’20 and ACC’20
PublicationTitle Advances in Artificial Intelligence and Applied Cognitive Computing
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Arabnia, Hamid
RelatedPersons_xml – sequence: 1
  givenname: Hamid
  surname: Arabnia
  fullname: Arabnia, Hamid
SSID ssj0002718678
Score 1.6197604
Snippet Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We...
SourceID springer
SourceType Publisher
StartPage 409
SubjectTerms Dynamic growth
Neural network
Pruning
Title Growing Artificial Neural Networks
URI http://link.springer.com/10.1007/978-3-030-70296-0_31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XtSLT3yziDeJbJpkd3Ms4gNRTyreluwmEVFasC2IF_-6k2TTTasXvWxLWjqzM9vky2S-GYSODTWMqJxjkwmOGQBcXKWVwVIynaqa0IxYgvPtXXb1wK6f-FOn8xVlLU3G1Wn9-Suv5D9ehTHwq2XJ_sGz0x-FAXgP_oUreBiuc-B3Nszq04v96b3LZ-2_u5QfXzgjqrFpo-IBZ55NE4V8J4ewZjlC4EfTnyPOzO2_Dp_fJp4F8xI_WpewdXfRlFaqrfHhXlxSucfp1gR65FdDT59wRxNeeohBhrnFajr7SXwjcWyiR-ZiEyE2ORfdbANsM5tZ6uafnvDFg_0cCIBM4Dz13X1OdTzmG0A18y5LRbSEM09h_rE6xAkhIAxbaRlOS8vDXwAFumixf3598zgN0vVyW-_PdTUMilh-UFC05ys4tYpH3MzfpPw4bXcg5n4VrVhiS2IZJ2CnNdTRg3W0HBWk3EBHjWuT1rWJd20SXLuJHi7O78-ucNNFA48Ae4xxprkUlTBZWisClqEFlbVU0nCulKKEyTwztCY1IEXFdZEXmmleyEITQ3mu6RbqDoYDvY0SbhhsKA3hxlRMVoXQigjYn8JqWwNUFTvoJNxfaf8XozIUxQZrlLQEa5TOGqW1xu6fvr2HltonbB91x-8TfQB4cFwdNl77BpM0Wls
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Mixter%2C+John&rft.au=Akoglu%2C+Ali&rft.atitle=Growing+Artificial+Neural+Networks&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=409&rft.epage=423&rft_id=info:doi/10.1007%2F978-3-030-70296-0_31
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon