Growing Artificial Neural Networks
Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We propose an algorithm, Artificial Neurogenesis (ANG), that grows rather than prunes the network and enables neural networks to be trained and e...
Saved in:
| Published in | Advances in Artificial Intelligence and Applied Cognitive Computing pp. 409 - 423 |
|---|---|
| Main Authors | , |
| Format | Book Chapter |
| Language | English |
| Published |
Cham
Springer International Publishing
2021
|
| Series | Transactions on Computational Science and Computational Intelligence |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030702953 3030702952 |
| ISSN | 2569-7072 2569-7080 |
| DOI | 10.1007/978-3-030-70296-0_31 |
Cover
| Abstract | Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We propose an algorithm, Artificial Neurogenesis (ANG), that grows rather than prunes the network and enables neural networks to be trained and executed in low SWaP embedded hardware. ANG accomplishes this by using the training data to determine critical connections between layers before the actual training takes place. Our experiments use a modified LeNet-5 as a baseline neural network that achieves a test accuracy of 98.74% using a total of 61,160 weights. An ANG grown network achieves a test accuracy of 98.80% with only 21,211 weights. |
|---|---|
| AbstractList | Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We propose an algorithm, Artificial Neurogenesis (ANG), that grows rather than prunes the network and enables neural networks to be trained and executed in low SWaP embedded hardware. ANG accomplishes this by using the training data to determine critical connections between layers before the actual training takes place. Our experiments use a modified LeNet-5 as a baseline neural network that achieves a test accuracy of 98.74% using a total of 61,160 weights. An ANG grown network achieves a test accuracy of 98.80% with only 21,211 weights. |
| Author | Akoglu, Ali Mixter, John |
| Author_xml | – sequence: 1 givenname: John surname: Mixter fullname: Mixter, John email: jmixter6011@email.arizona.edu – sequence: 2 givenname: Ali surname: Akoglu fullname: Akoglu, Ali |
| BookMark | eNpVkEtLAzEUhaNWsNb5By6K-9ib3MljlqVoFUrd6DqkecjYMiPJSP--6SiCqwPfOVzuOddk0vVdIOSWwT0DUItGaYoUEKgC3kgKBtkZqQrGAkcG52TKhWxKQsPFP0_g5M9T_IpUOX8AAFdMS6Wn5G6d-mPbvc-XaWhj61p7mG_DVxplOPZpn2_IZbSHHKpfnZG3x4fX1RPdvKyfV8sNzYzrgcogbLNrogTnWc0RNVpnvY1CeO-R1VbJiI45zrkXQSsd6iC01YFFFCrgjPCfu_kzlY9CMru-32fDwJyGMKWVQVN6mbG0OQ2B37aiTKU |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2021 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
| DOI | 10.1007/978-3-030-70296-0_31 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9783030702960 3030702960 |
| EISSN | 2569-7080 |
| Editor | Ferens, Ken Olivas Varela, José Angel Tinetti, Fernando G. Arabnia, Hamid R. Kozerenko, Elena B. de la Fuente, David |
| Editor_xml | – sequence: 1 givenname: Hamid R. surname: Arabnia fullname: Arabnia, Hamid R. email: hra@uga.edu – sequence: 2 givenname: Ken surname: Ferens fullname: Ferens, Ken email: ken.ferens@ad.umanitoba.ca – sequence: 3 givenname: David surname: de la Fuente fullname: de la Fuente, David email: david@uniovi.es – sequence: 4 givenname: Elena B. surname: Kozerenko fullname: Kozerenko, Elena B. email: elenakozerenko@yahoo.com – sequence: 5 givenname: José Angel surname: Olivas Varela fullname: Olivas Varela, José Angel email: joseangel.olivas@uclm.es – sequence: 6 givenname: Fernando G. surname: Tinetti fullname: Tinetti, Fernando G. email: fernando@info.unlp.edu.ar |
| EndPage | 423 |
| GroupedDBID | 38. AABBV AABLV ABLLD ABNDO ACWLQ AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY I4C IEZ OCUHQ ORHYB SBO TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 |
| ID | FETCH-LOGICAL-s128t-6e5a9b9f60cd1423383acadaf55ddd314a76f3c1c222d5e878e4e58a8e1f357e3 |
| ISBN | 9783030702953 3030702952 |
| ISSN | 2569-7072 |
| IngestDate | Tue Jul 29 20:17:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s128t-6e5a9b9f60cd1423383acadaf55ddd314a76f3c1c222d5e878e4e58a8e1f357e3 |
| PageCount | 15 |
| ParticipantIDs | springer_books_10_1007_978_3_030_70296_0_31 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSeriesTitle | Transactions on Computational Science and Computational Intelligence |
| PublicationSeriesTitleAlternate | Transactions Computational Science Computational Intelligence |
| PublicationSubtitle | Proceedings from ICAI’20 and ACC’20 |
| PublicationTitle | Advances in Artificial Intelligence and Applied Cognitive Computing |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| RelatedPersons | Arabnia, Hamid |
| RelatedPersons_xml | – sequence: 1 givenname: Hamid surname: Arabnia fullname: Arabnia, Hamid |
| SSID | ssj0002718678 |
| Score | 1.6197604 |
| Snippet | Pruning is a legitimate method for reducing the size of a neural network to fit in low SWaP hardware, but the networks must be trained and pruned offline. We... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 409 |
| SubjectTerms | Dynamic growth Neural network Pruning |
| Title | Growing Artificial Neural Networks |
| URI | http://link.springer.com/10.1007/978-3-030-70296-0_31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XtSLT3yziDeJbJpkd3Ms4gNRTyreluwmEVFasC2IF_-6k2TTTasXvWxLWjqzM9vky2S-GYSODTWMqJxjkwmOGQBcXKWVwVIynaqa0IxYgvPtXXb1wK6f-FOn8xVlLU3G1Wn9-Suv5D9ehTHwq2XJ_sGz0x-FAXgP_oUreBiuc-B3Nszq04v96b3LZ-2_u5QfXzgjqrFpo-IBZ55NE4V8J4ewZjlC4EfTnyPOzO2_Dp_fJp4F8xI_WpewdXfRlFaqrfHhXlxSucfp1gR65FdDT59wRxNeeohBhrnFajr7SXwjcWyiR-ZiEyE2ORfdbANsM5tZ6uafnvDFg_0cCIBM4Dz13X1OdTzmG0A18y5LRbSEM09h_rE6xAkhIAxbaRlOS8vDXwAFumixf3598zgN0vVyW-_PdTUMilh-UFC05ys4tYpH3MzfpPw4bXcg5n4VrVhiS2IZJ2CnNdTRg3W0HBWk3EBHjWuT1rWJd20SXLuJHi7O78-ucNNFA48Ae4xxprkUlTBZWisClqEFlbVU0nCulKKEyTwztCY1IEXFdZEXmmleyEITQ3mu6RbqDoYDvY0SbhhsKA3hxlRMVoXQigjYn8JqWwNUFTvoJNxfaf8XozIUxQZrlLQEa5TOGqW1xu6fvr2HltonbB91x-8TfQB4cFwdNl77BpM0Wls |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Mixter%2C+John&rft.au=Akoglu%2C+Ali&rft.atitle=Growing+Artificial+Neural+Networks&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=409&rft.epage=423&rft_id=info:doi/10.1007%2F978-3-030-70296-0_31 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon |