BI-LSTM-LSTM Based Time Series Electricity Consumption Forecast for South Korea

Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline. Electricity is the promising resource because of low carbon footprints as compared to other fuel resources. Right now, biggest electricity consumers...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Intelligence and Applied Cognitive Computing pp. 897 - 902
Main Authors Gul, Malik Junaid Jami, Firmansyah, M. Hafid, Rho, Seungmin, Paul, Anand
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2021
SeriesTransactions on Computational Science and Computational Intelligence
Subjects
Online AccessGet full text
ISBN9783030702953
3030702952
ISSN2569-7072
2569-7080
DOI10.1007/978-3-030-70296-0_71

Cover

Abstract Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline. Electricity is the promising resource because of low carbon footprints as compared to other fuel resources. Right now, biggest electricity consumers are households and industries. Forecasting the need of the respective sectors, governments can decide the future direction. This can result in better planning. As the second phase of our project, we have tested LST with Bi-LSTM to check the overall performance of the neural network model. Dataset is provided by Korea Electric power supply to get insights for metropolitan city like Seoul. Dataset is in time series so we require to analyze dataset with time distributed machine learning models that can support time series dataset. This study provides experimental results from the proposed models. Our model shows RMSE scores of 0.15 on training and 0.19 for testing with tuning hyperparameters of the model to optimum level.
AbstractList Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline. Electricity is the promising resource because of low carbon footprints as compared to other fuel resources. Right now, biggest electricity consumers are households and industries. Forecasting the need of the respective sectors, governments can decide the future direction. This can result in better planning. As the second phase of our project, we have tested LST with Bi-LSTM to check the overall performance of the neural network model. Dataset is provided by Korea Electric power supply to get insights for metropolitan city like Seoul. Dataset is in time series so we require to analyze dataset with time distributed machine learning models that can support time series dataset. This study provides experimental results from the proposed models. Our model shows RMSE scores of 0.15 on training and 0.19 for testing with tuning hyperparameters of the model to optimum level.
Author Paul, Anand
Firmansyah, M. Hafid
Gul, Malik Junaid Jami
Rho, Seungmin
Author_xml – sequence: 1
  givenname: Malik Junaid Jami
  surname: Gul
  fullname: Gul, Malik Junaid Jami
– sequence: 2
  givenname: M. Hafid
  surname: Firmansyah
  fullname: Firmansyah, M. Hafid
– sequence: 3
  givenname: Seungmin
  surname: Rho
  fullname: Rho, Seungmin
  email: smrho@sejong.edu
– sequence: 4
  givenname: Anand
  surname: Paul
  fullname: Paul, Anand
BookMark eNpVkMtOwzAQRQ0UiVLyByz8A4axHT-ypFELFUVdNKwtx3Ug0MZVnC74e9yCkNjMHZ07msW5RqMudB6hWwp3FEDdF0oTToADUcAKScAoeoayhHmCJwbnaMyELNKFhot_neCjv06xK5TF-AEATFEtlR6j1XRBluvq5TTw1Ea_wVW783jt-9ZHPNt6N_Sta4cvXIYuHnb7oQ0dnofeOxsH3IQer8NheMfPCdkbdNnYbfTZb07Q63xWlU9kuXpclA9LEinTA2G84EIViglbC6u5dkUNaXcgG3CMNrmzTjsG2rvaUlnnzDKZC7rRglvp-QSxn79x37fdm-9NHcJnNBTM0ZpJCgw3SYI5GTJHa_wbsJpbNQ
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DOI 10.1007/978-3-030-70296-0_71
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9783030702960
3030702960
EISSN 2569-7080
Editor Ferens, Ken
Olivas Varela, José Angel
Tinetti, Fernando G.
Arabnia, Hamid R.
Kozerenko, Elena B.
de la Fuente, David
Editor_xml – sequence: 1
  givenname: Hamid R.
  surname: Arabnia
  fullname: Arabnia, Hamid R.
  email: hra@uga.edu
– sequence: 2
  givenname: Ken
  surname: Ferens
  fullname: Ferens, Ken
  email: ken.ferens@ad.umanitoba.ca
– sequence: 3
  givenname: David
  surname: de la Fuente
  fullname: de la Fuente, David
  email: david@uniovi.es
– sequence: 4
  givenname: Elena B.
  surname: Kozerenko
  fullname: Kozerenko, Elena B.
  email: elenakozerenko@yahoo.com
– sequence: 5
  givenname: José Angel
  surname: Olivas Varela
  fullname: Olivas Varela, José Angel
  email: joseangel.olivas@uclm.es
– sequence: 6
  givenname: Fernando G.
  surname: Tinetti
  fullname: Tinetti, Fernando G.
  email: fernando@info.unlp.edu.ar
EndPage 902
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s128t-2393579725ab5a838c9b05abc06f0c21f4cac8c208ecba16b42a26451d853a6e3
ISBN 9783030702953
3030702952
ISSN 2569-7072
IngestDate Tue Jul 29 20:17:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s128t-2393579725ab5a838c9b05abc06f0c21f4cac8c208ecba16b42a26451d853a6e3
PageCount 6
ParticipantIDs springer_books_10_1007_978_3_030_70296_0_71
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Transactions on Computational Science and Computational Intelligence
PublicationSeriesTitleAlternate Transactions Computational Science Computational Intelligence
PublicationSubtitle Proceedings from ICAI’20 and ACC’20
PublicationTitle Advances in Artificial Intelligence and Applied Cognitive Computing
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Arabnia, Hamid
RelatedPersons_xml – sequence: 1
  givenname: Hamid
  surname: Arabnia
  fullname: Arabnia, Hamid
SSID ssj0002718678
Score 1.6377989
Snippet Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline....
SourceID springer
SourceType Publisher
StartPage 897
SubjectTerms Bi-LSTM
Demand and supply
Electricity consumption
Forecasting
LSTM
RNN
Title BI-LSTM-LSTM Based Time Series Electricity Consumption Forecast for South Korea
URI http://link.springer.com/10.1007/978-3-030-70296-0_71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcd2mz9Ik2fYBDN0GG3o-hQxK4cN24BRqnyCaQNIUITV0gkob0L_dP9O5oyrSTJV0IgX6QuvtEno7f3TH2Ic_KUqci9pXMMj8JNTxSmMI1jih7eiZqgQ79xddsdp7ML9KL0eivw1rqOzlRf-6MK_kfrUIf6BWjZO-h2eFPoQOuQb_Qgoah3TN-d92shl5sTu-Jz3p0TZQfkzjDybGJXnFrZ54MRCFTycHuWUi-6a9M3M5V89Ob92vRrJA-2wzKbTC0oL0R5INZTLyZqC0Tvv_4_ZLcrWca1o1fzQA25BwayqQpEjIg8_izf3q2XFDjHcMuuqJAFFy24LXdm1JhHriZ7obKiQLeCKNYRFSJtiNiJFX-875Al9lWWvqt2XlNqAYdg5g7tf5Ou46hVHY_cYXm-kGicM8PYv2ge57UrTNv58U5prUuKk2iYrPegvFX-nlgKglNtNtnik1t1vjCEIo35kJJAeO3dyKXfAKD-Tha5gcV5jt4ABMYs4dH0_npj8EhGOWYW5AqKNqJYCySnWhkskVtJ-7Egd41yq2TfTKYlk_YAQbRcIxuATk9ZSO9fsYeO8kvn7NvLg444YAjDrjBAXdwwB0ccIsDDjjghANOOHjBzj9Nlyczf1Pew2_BKOp8Sr6Xl3mUCpmKIi5UKQO4VkFWByoK60QJVagoKLSSIsxkEgkw39NwBSamyHT8ko3Xv9f6FeOprIsiKdJS1zpRYSwxkVuSlHVUizyX6jXzrDAqfGDbymbrBtFVcQWiq0h0FYru8F7ffsMebeH4lo27616_A0O1k-83Kv4H45-NhQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Gul%2C+Malik+Junaid+Jami&rft.au=Firmansyah%2C+M.+Hafid&rft.au=Rho%2C+Seungmin&rft.au=Paul%2C+Anand&rft.atitle=BI-LSTM-LSTM+Based+Time+Series+Electricity+Consumption+Forecast+for+South+Korea&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=897&rft.epage=902&rft_id=info:doi/10.1007%2F978-3-030-70296-0_71
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon