BI-LSTM-LSTM Based Time Series Electricity Consumption Forecast for South Korea
Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline. Electricity is the promising resource because of low carbon footprints as compared to other fuel resources. Right now, biggest electricity consumers...
Saved in:
| Published in | Advances in Artificial Intelligence and Applied Cognitive Computing pp. 897 - 902 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Cham
Springer International Publishing
2021
|
| Series | Transactions on Computational Science and Computational Intelligence |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030702953 3030702952 |
| ISSN | 2569-7072 2569-7080 |
| DOI | 10.1007/978-3-030-70296-0_71 |
Cover
| Abstract | Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline. Electricity is the promising resource because of low carbon footprints as compared to other fuel resources. Right now, biggest electricity consumers are households and industries. Forecasting the need of the respective sectors, governments can decide the future direction. This can result in better planning. As the second phase of our project, we have tested LST with Bi-LSTM to check the overall performance of the neural network model. Dataset is provided by Korea Electric power supply to get insights for metropolitan city like Seoul. Dataset is in time series so we require to analyze dataset with time distributed machine learning models that can support time series dataset. This study provides experimental results from the proposed models. Our model shows RMSE scores of 0.15 on training and 0.19 for testing with tuning hyperparameters of the model to optimum level. |
|---|---|
| AbstractList | Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline. Electricity is the promising resource because of low carbon footprints as compared to other fuel resources. Right now, biggest electricity consumers are households and industries. Forecasting the need of the respective sectors, governments can decide the future direction. This can result in better planning. As the second phase of our project, we have tested LST with Bi-LSTM to check the overall performance of the neural network model. Dataset is provided by Korea Electric power supply to get insights for metropolitan city like Seoul. Dataset is in time series so we require to analyze dataset with time distributed machine learning models that can support time series dataset. This study provides experimental results from the proposed models. Our model shows RMSE scores of 0.15 on training and 0.19 for testing with tuning hyperparameters of the model to optimum level. |
| Author | Paul, Anand Firmansyah, M. Hafid Gul, Malik Junaid Jami Rho, Seungmin |
| Author_xml | – sequence: 1 givenname: Malik Junaid Jami surname: Gul fullname: Gul, Malik Junaid Jami – sequence: 2 givenname: M. Hafid surname: Firmansyah fullname: Firmansyah, M. Hafid – sequence: 3 givenname: Seungmin surname: Rho fullname: Rho, Seungmin email: smrho@sejong.edu – sequence: 4 givenname: Anand surname: Paul fullname: Paul, Anand |
| BookMark | eNpVkMtOwzAQRQ0UiVLyByz8A4axHT-ypFELFUVdNKwtx3Ug0MZVnC74e9yCkNjMHZ07msW5RqMudB6hWwp3FEDdF0oTToADUcAKScAoeoayhHmCJwbnaMyELNKFhot_neCjv06xK5TF-AEATFEtlR6j1XRBluvq5TTw1Ea_wVW783jt-9ZHPNt6N_Sta4cvXIYuHnb7oQ0dnofeOxsH3IQer8NheMfPCdkbdNnYbfTZb07Q63xWlU9kuXpclA9LEinTA2G84EIViglbC6u5dkUNaXcgG3CMNrmzTjsG2rvaUlnnzDKZC7rRglvp-QSxn79x37fdm-9NHcJnNBTM0ZpJCgw3SYI5GTJHa_wbsJpbNQ |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2021 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
| DOI | 10.1007/978-3-030-70296-0_71 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9783030702960 3030702960 |
| EISSN | 2569-7080 |
| Editor | Ferens, Ken Olivas Varela, José Angel Tinetti, Fernando G. Arabnia, Hamid R. Kozerenko, Elena B. de la Fuente, David |
| Editor_xml | – sequence: 1 givenname: Hamid R. surname: Arabnia fullname: Arabnia, Hamid R. email: hra@uga.edu – sequence: 2 givenname: Ken surname: Ferens fullname: Ferens, Ken email: ken.ferens@ad.umanitoba.ca – sequence: 3 givenname: David surname: de la Fuente fullname: de la Fuente, David email: david@uniovi.es – sequence: 4 givenname: Elena B. surname: Kozerenko fullname: Kozerenko, Elena B. email: elenakozerenko@yahoo.com – sequence: 5 givenname: José Angel surname: Olivas Varela fullname: Olivas Varela, José Angel email: joseangel.olivas@uclm.es – sequence: 6 givenname: Fernando G. surname: Tinetti fullname: Tinetti, Fernando G. email: fernando@info.unlp.edu.ar |
| EndPage | 902 |
| GroupedDBID | 38. AABBV AABLV ABLLD ABNDO ACWLQ AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY I4C IEZ OCUHQ ORHYB SBO TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 |
| ID | FETCH-LOGICAL-s128t-2393579725ab5a838c9b05abc06f0c21f4cac8c208ecba16b42a26451d853a6e3 |
| ISBN | 9783030702953 3030702952 |
| ISSN | 2569-7072 |
| IngestDate | Tue Jul 29 20:17:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s128t-2393579725ab5a838c9b05abc06f0c21f4cac8c208ecba16b42a26451d853a6e3 |
| PageCount | 6 |
| ParticipantIDs | springer_books_10_1007_978_3_030_70296_0_71 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSeriesTitle | Transactions on Computational Science and Computational Intelligence |
| PublicationSeriesTitleAlternate | Transactions Computational Science Computational Intelligence |
| PublicationSubtitle | Proceedings from ICAI’20 and ACC’20 |
| PublicationTitle | Advances in Artificial Intelligence and Applied Cognitive Computing |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| RelatedPersons | Arabnia, Hamid |
| RelatedPersons_xml | – sequence: 1 givenname: Hamid surname: Arabnia fullname: Arabnia, Hamid |
| SSID | ssj0002718678 |
| Score | 1.6377989 |
| Snippet | Electricity is playing an important factor to drive the economy of the nation. Every country is trying to find fuel resources alternative to gasoline.... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 897 |
| SubjectTerms | Bi-LSTM Demand and supply Electricity consumption Forecasting LSTM RNN |
| Title | BI-LSTM-LSTM Based Time Series Electricity Consumption Forecast for South Korea |
| URI | http://link.springer.com/10.1007/978-3-030-70296-0_71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcd2mz9Ik2fYBDN0GG3o-hQxK4cN24BRqnyCaQNIUITV0gkob0L_dP9O5oyrSTJV0IgX6QuvtEno7f3TH2Ic_KUqci9pXMMj8JNTxSmMI1jih7eiZqgQ79xddsdp7ML9KL0eivw1rqOzlRf-6MK_kfrUIf6BWjZO-h2eFPoQOuQb_Qgoah3TN-d92shl5sTu-Jz3p0TZQfkzjDybGJXnFrZ54MRCFTycHuWUi-6a9M3M5V89Ob92vRrJA-2wzKbTC0oL0R5INZTLyZqC0Tvv_4_ZLcrWca1o1fzQA25BwayqQpEjIg8_izf3q2XFDjHcMuuqJAFFy24LXdm1JhHriZ7obKiQLeCKNYRFSJtiNiJFX-875Al9lWWvqt2XlNqAYdg5g7tf5Ou46hVHY_cYXm-kGicM8PYv2ge57UrTNv58U5prUuKk2iYrPegvFX-nlgKglNtNtnik1t1vjCEIo35kJJAeO3dyKXfAKD-Tha5gcV5jt4ABMYs4dH0_npj8EhGOWYW5AqKNqJYCySnWhkskVtJ-7Egd41yq2TfTKYlk_YAQbRcIxuATk9ZSO9fsYeO8kvn7NvLg444YAjDrjBAXdwwB0ccIsDDjjghANOOHjBzj9Nlyczf1Pew2_BKOp8Sr6Xl3mUCpmKIi5UKQO4VkFWByoK60QJVagoKLSSIsxkEgkw39NwBSamyHT8ko3Xv9f6FeOprIsiKdJS1zpRYSwxkVuSlHVUizyX6jXzrDAqfGDbymbrBtFVcQWiq0h0FYru8F7ffsMebeH4lo27616_A0O1k-83Kv4H45-NhQ |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Applied+Cognitive+Computing&rft.au=Gul%2C+Malik+Junaid+Jami&rft.au=Firmansyah%2C+M.+Hafid&rft.au=Rho%2C+Seungmin&rft.au=Paul%2C+Anand&rft.atitle=BI-LSTM-LSTM+Based+Time+Series+Electricity+Consumption+Forecast+for+South+Korea&rft.series=Transactions+on+Computational+Science+and+Computational+Intelligence&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030702953&rft.issn=2569-7072&rft.eissn=2569-7080&rft.spage=897&rft.epage=902&rft_id=info:doi/10.1007%2F978-3-030-70296-0_71 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2569-7072&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2569-7072&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2569-7072&client=summon |