FFT-Based Dense Polynomial Arithmetic on Multi-cores

We report efficient implementation techniques for FFT-based dense multivariate polynomial arithmetic over finite fields, targeting multi-cores. We have extended a preliminary study dedicated to polynomial multiplication and obtained a complete set of efficient parallel routines in Cilk++ for polynom...

Full description

Saved in:
Bibliographic Details
Published inHigh Performance Computing Systems and Applications pp. 378 - 399
Main Authors Moreno Maza, Marc, Xie, Yuzhen
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2010
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3642126588
9783642126581
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-12659-8_28

Cover

Abstract We report efficient implementation techniques for FFT-based dense multivariate polynomial arithmetic over finite fields, targeting multi-cores. We have extended a preliminary study dedicated to polynomial multiplication and obtained a complete set of efficient parallel routines in Cilk++ for polynomial arithmetic such as normal form computation. Since bivariate multiplication applied to balanced data is a good kernel for these routines, we provide an in-depth study on the performance and the cut-off criteria of our different implementations for this operation. We also show that, not only optimized parallel multiplication can improve the performance of higher-level algorithms such as normal form computation but also this composition is necessary for parallel normal form computation to reach peak performance on a variety of problems that we have tested.
AbstractList We report efficient implementation techniques for FFT-based dense multivariate polynomial arithmetic over finite fields, targeting multi-cores. We have extended a preliminary study dedicated to polynomial multiplication and obtained a complete set of efficient parallel routines in Cilk++ for polynomial arithmetic such as normal form computation. Since bivariate multiplication applied to balanced data is a good kernel for these routines, we provide an in-depth study on the performance and the cut-off criteria of our different implementations for this operation. We also show that, not only optimized parallel multiplication can improve the performance of higher-level algorithms such as normal form computation but also this composition is necessary for parallel normal form computation to reach peak performance on a variety of problems that we have tested.
Author Moreno Maza, Marc
Xie, Yuzhen
Author_xml – sequence: 1
  givenname: Marc
  surname: Moreno Maza
  fullname: Moreno Maza, Marc
  email: moreno@csd.uwo.ca
  organization: Ontario Research Centre for Computer Algebra, University of Western Ontario, London, Canada
– sequence: 2
  givenname: Yuzhen
  surname: Xie
  fullname: Xie, Yuzhen
  email: yxie@csail.mit.edu
  organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA
BookMark eNo1kEFOwzAQRQ0UibT0BixyAYPHYzvjZSkUkIpgUdaWkzoQSGMUhwW3Jy0wmy-9L31p3pRNutgFxi5AXIIQxZUtiCM3SnKQRltOTtIRm48YR3hgdMwyMAAcUdkTNv0viCYsEygkt4XCMzZP6V2Mp5TRUGRMrVYbfu1T2OY3oUshf47tdxd3jW_zRd8Mb7swNFUeu_zxqx0aXsU-pHN2Wvs2hflfztjL6nazvOfrp7uH5WLNEwASJw1Gbj2gMkS-VuAFVoUUGHwgZYvK1lTq0pA3AYBsKbSWVqOEgJXRBmdM_u6mz77pXkPvyhg_kgPh9l7cKMChGz91Bwdu7wV_AGv4UCc
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2010
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2010
DOI 10.1007/978-3-642-12659-8_28
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783642126598
3642126596
EISSN 1611-3349
Editor Naughton, Thomas J.
Mewhort, Douglas J. K.
Cann, Natalie M.
Slater, Gary W.
Editor_xml – sequence: 1
  givenname: Douglas J. K.
  surname: Mewhort
  fullname: Mewhort, Douglas J. K.
  email: mewhortd@queensu.ca
– sequence: 2
  givenname: Natalie M.
  surname: Cann
  fullname: Cann, Natalie M.
  email: ncann@chem.queensu.ca
– sequence: 3
  givenname: Gary W.
  surname: Slater
  fullname: Slater, Gary W.
  email: deangrad@uottawa.ca
– sequence: 4
  givenname: Thomas J.
  surname: Naughton
  fullname: Naughton, Thomas J.
  email: naughtont@ornl.gov
EndPage 399
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1138-85162da134688af41a03c7203eae8497c9f8b5b68a6e1189b055295321e3c6563
ISBN 3642126588
9783642126581
ISSN 0302-9743
IngestDate Wed Sep 17 03:46:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1138-85162da134688af41a03c7203eae8497c9f8b5b68a6e1189b055295321e3c6563
PageCount 22
ParticipantIDs springer_books_10_1007_978_3_642_12659_8_28
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 23rd International Symposium, HPCS 2009, Kingston, ON, Canada, June 14-17, 2009, Revised Selected Papers
PublicationTitle High Performance Computing Systems and Applications
PublicationYear 2010
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000446517
ssj0002792
Score 1.4087925
Snippet We report efficient implementation techniques for FFT-based dense multivariate polynomial arithmetic over finite fields, targeting multi-cores. We have...
SourceID springer
SourceType Publisher
StartPage 378
SubjectTerms Cilk
multi-core
parallel multi-dimensional FFT/TFT
parallel normal form
Parallel polynomial arithmetic
parallel polynomial multiplication
Title FFT-Based Dense Polynomial Arithmetic on Multi-cores
URI http://link.springer.com/10.1007/978-3-642-12659-8_28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXK9oI40JYiPkqVQ28rV3HsGOfAgVYghIDTUi2nyHEcwYFE2s0e2F_PjB0nKaBK9BJFSbR25mXHM555M4T8qABX8I0lZSYRVGiZUaWNoVliWAX2UcZTZCNf38iLW3E5T-dDnq5jl7TFT7N-k1fyP6jCNcAVWbLvQLb_UbgA54AvHAFhOL4wfv_eZvV1CsGtxgT2Pu_fN2hwFbZ9GXIXGDgdRah76TYLWzfTa73WHV_HhFtzH6-4W63vA0msa3N0PqO_YMnDxOV6aTFx7gkpzQjx4qG9f0Q2JIYeHKWXYnVMPx5Kwi5PrrpgxU3TuhywaegnEdTLeP_BpbGN9x_C_uP0H-W5HFUEQ89g7rCRguOgjcGf8QrOegUssawi92VMO6XKfZOfbn3mvqHSK9U_zvaAwSiOBh9enqgNsgETmJCPp2eXV3_6HTgMZaesd89jLKXoY05-VsgECrNWvlbT8BYjFuZbQ76KqztzZfaJbCGFJUJuCQj4M_lg6y9kOwg86gS-Q0QPauRAjQZQowHUqKmjEahfye352ez3Be3aaNAlY7CcgU0tk1IzLqRSuhJMx9xg9N1qq0R2bLJKFWkhlZYW3M2siFOM_vKEWW7A3Oe7ZFI3td0jkYytKJlNwEfloPkrVQpmbWYKWUoVF-U-mYbXzvGPscxDVWwQUs5zEFLuhJSjkA7e9fQh2Rw-v29k0i5W9ggMwrb43iH7DH9GU_E
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=High+Performance+Computing+Systems+and+Applications&rft.au=Moreno+Maza%2C+Marc&rft.au=Xie%2C+Yuzhen&rft.atitle=FFT-Based+Dense+Polynomial+Arithmetic+on+Multi-cores&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2010-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642126581&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=378&rft.epage=399&rft_id=info:doi/10.1007%2F978-3-642-12659-8_28
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon