Identifying the Most Influential User Preference from an Assorted Collection
A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A relative skyline query, in contrast, is issued with a combination of a query point and a set of preference annotations for all involved dimen...
Saved in:
| Published in | Scientific and Statistical Database Management pp. 233 - 251 |
|---|---|
| Main Authors | , |
| Format | Book Chapter |
| Language | English |
| Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2010
|
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3642138179 9783642138171 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-642-13818-8_18 |
Cover
| Abstract | A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A relative skyline query, in contrast, is issued with a combination of a query point and a set of preference annotations for all involved dimensions. Due to the relative dominance definition in a relative skyline query, there exist various such combinations which we call as user preferences. It is also often interesting to identify from an assorted user preference collection the most influential preference that leads to the largest relative skyline. We call such a problem the most influential preference query. In this paper we propose a complete set of techniques to solve such novel and useful problems within a uniform framework. We first formalize different preference annotations that can be imposed on a dimension by a relative skyline query user. We then propose an effective transformation to handle all these annotations in a uniform way. Based on the transformation, we adapt the well-established Branch-and-Bound Skyline (BBS) algorithm to process relative skyline queries with assorted user preferences. In order to process the most influential preference queries, we develop two aggregation R-tree based algorithms. We conduct extensive experiments on both real and synthetic datasets to evaluate our proposals. |
|---|---|
| AbstractList | A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A relative skyline query, in contrast, is issued with a combination of a query point and a set of preference annotations for all involved dimensions. Due to the relative dominance definition in a relative skyline query, there exist various such combinations which we call as user preferences. It is also often interesting to identify from an assorted user preference collection the most influential preference that leads to the largest relative skyline. We call such a problem the most influential preference query. In this paper we propose a complete set of techniques to solve such novel and useful problems within a uniform framework. We first formalize different preference annotations that can be imposed on a dimension by a relative skyline query user. We then propose an effective transformation to handle all these annotations in a uniform way. Based on the transformation, we adapt the well-established Branch-and-Bound Skyline (BBS) algorithm to process relative skyline queries with assorted user preferences. In order to process the most influential preference queries, we develop two aggregation R-tree based algorithms. We conduct extensive experiments on both real and synthetic datasets to evaluate our proposals. |
| Author | Xu, Linhao Lu, Hua |
| Author_xml | – sequence: 1 givenname: Hua surname: Lu fullname: Lu, Hua email: luhua@cs.aau.dk organization: Department of Computer Science, Aalborg University, Denmark – sequence: 2 givenname: Linhao surname: Xu fullname: Xu, Linhao email: xulinhao@cn.ibm.com organization: IBM China Research Lab, China |
| BookMark | eNpFkE1LAzEQQKNWsK39Bx7yB6JJ830sRWthRQ_2HLK7E62uiSTrwX9vWgXnMvAGhseboUlMERC6YvSaUapvrDaEEyWWhHHDDDGOmRM045UcgT5FU6YYI5wLe_Z_0HaCppTTJbFa8Au0KOWN1hFCaWmmqNn2EMd9-N7HFzy-An5IZcTbGIavA_cD3hXI-ClDgAyxAxxy-sA-4lUpKY_Q43UaBujGfYqX6Dz4ocDib8_R7u72eX1PmsfNdr1qSGHViciWWoCuCsney0Bp37XaawWy9YpJxbgVEDjtqeEgrYUOBFVCe2ODlVbwOVr-_i2fuXpDdm1K78Ux6g6xXI3luKsF3LGNO8TiPx6ZWic |
| ContentType | Book Chapter |
| Copyright | Springer-Verlag Berlin Heidelberg 2010 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2010 |
| DOI | 10.1007/978-3-642-13818-8_18 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 3642138187 9783642138188 |
| EISSN | 1611-3349 |
| Editor | Ludäscher, Bertram Gertz, Michael |
| Editor_xml | – sequence: 1 givenname: Michael surname: Gertz fullname: Gertz, Michael email: gertz@informatik.uni-heidelberg.de – sequence: 2 givenname: Bertram surname: Ludäscher fullname: Ludäscher, Bertram email: ludaesch@ucdavis.edu |
| EndPage | 251 |
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
| ID | FETCH-LOGICAL-s1138-5b09eec9745da5f00dcb7a76e5ba61561394ef30d083e599ece40647a89f95943 |
| ISBN | 3642138179 9783642138171 |
| ISSN | 0302-9743 |
| IngestDate | Wed Sep 17 03:39:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1138-5b09eec9745da5f00dcb7a76e5ba61561394ef30d083e599ece40647a89f95943 |
| PageCount | 19 |
| ParticipantIDs | springer_books_10_1007_978_3_642_13818_8_18 |
| PublicationCentury | 2000 |
| PublicationDate | 2010 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – year: 2010 text: 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin, Heidelberg |
| PublicationPlace_xml | – name: Berlin, Heidelberg |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSubtitle | 22nd International Conference, SSDBM 2010, Heidelberg, Germany, June 30–July 2, 2010. Proceedings |
| PublicationTitle | Scientific and Statistical Database Management |
| PublicationYear | 2010 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany |
| SSID | ssj0000446758 ssj0002792 |
| Score | 1.3583107 |
| Snippet | A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 233 |
| SubjectTerms | Query Point Skyline Computation Skyline Point Skyline Query User Preference |
| Title | Identifying the Most Influential User Preference from an Assorted Collection |
| URI | http://link.springer.com/10.1007/978-3-642-13818-8_18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLMDAW7zlga0KSmo7qQcGxEMIFSaKukV24oiplUi68Ou5s-PGQIUESxRZVWPf55wv5_s-E3IhTaJgJulIySqOeCmTSA4Ei1KZmCquUmUq5Ds_PacPY_44EZOubMyySxp9WXws5ZX8B1VoA1yRJfsHZBd_Cg1wD_jCFRCG67fg92ua1XE4LJURK31c-SXuqdcuM32rGoXL05LiltHcLjbzhTeezNtP8zc1C-ePY_A6FhQGp0-zugFvYo80aTDNPoYhYgWHF6q1RBXwFgj4O8axNidRLIBHi5j6atRuWjzPGlsL1vfnSng3E-YhbDlbmIfwecj-LzJdljLCBwmqAiaBo2PgleG7xjk64xxxivKKzMmZeufKWLBOD5xQ7Y8lIKz6gIehyGIyjIZ5Mlwlq9CBHlm7vnscvS4ycbilnQUa8yip6PaeXK-QEeR7LZ1mUzeKgI257JE_9tdt2PKyTTaRykKRYwIG3iErZrpLtrzBaWvwXbIRqFLukVEAPQXoKUJPA-gpQk876ClCT9WUeuhpB_0-Gd_fvdw8RO2hG1GdQL8joWNpTAEDF6USVRyXhc5UlhqhFUS_EP1JbioWlxC7GyGlKQxHwrIaykoKydkB6U1nU3NIqB7EWaEyaC8LzhlXEBhpnQrFFArlpUek742T42tU515DG0yZsxxMmVtT5mjK4z_9-oSsd5P0lPSa97k5g_Cx0ect_p_8uma4 |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Scientific+and+Statistical+Database+Management&rft.au=Lu%2C+Hua&rft.au=Xu%2C+Linhao&rft.atitle=Identifying+the+Most+Influential+User+Preference+from+an+Assorted+Collection&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2010-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642138171&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=233&rft.epage=251&rft_id=info:doi/10.1007%2F978-3-642-13818-8_18 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |