Identifying the Most Influential User Preference from an Assorted Collection

A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A relative skyline query, in contrast, is issued with a combination of a query point and a set of preference annotations for all involved dimen...

Full description

Saved in:
Bibliographic Details
Published inScientific and Statistical Database Management pp. 233 - 251
Main Authors Lu, Hua, Xu, Linhao
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2010
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3642138179
9783642138171
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-13818-8_18

Cover

Abstract A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A relative skyline query, in contrast, is issued with a combination of a query point and a set of preference annotations for all involved dimensions. Due to the relative dominance definition in a relative skyline query, there exist various such combinations which we call as user preferences. It is also often interesting to identify from an assorted user preference collection the most influential preference that leads to the largest relative skyline. We call such a problem the most influential preference query. In this paper we propose a complete set of techniques to solve such novel and useful problems within a uniform framework. We first formalize different preference annotations that can be imposed on a dimension by a relative skyline query user. We then propose an effective transformation to handle all these annotations in a uniform way. Based on the transformation, we adapt the well-established Branch-and-Bound Skyline (BBS) algorithm to process relative skyline queries with assorted user preferences. In order to process the most influential preference queries, we develop two aggregation R-tree based algorithms. We conduct extensive experiments on both real and synthetic datasets to evaluate our proposals.
AbstractList A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A relative skyline query, in contrast, is issued with a combination of a query point and a set of preference annotations for all involved dimensions. Due to the relative dominance definition in a relative skyline query, there exist various such combinations which we call as user preferences. It is also often interesting to identify from an assorted user preference collection the most influential preference that leads to the largest relative skyline. We call such a problem the most influential preference query. In this paper we propose a complete set of techniques to solve such novel and useful problems within a uniform framework. We first formalize different preference annotations that can be imposed on a dimension by a relative skyline query user. We then propose an effective transformation to handle all these annotations in a uniform way. Based on the transformation, we adapt the well-established Branch-and-Bound Skyline (BBS) algorithm to process relative skyline queries with assorted user preferences. In order to process the most influential preference queries, we develop two aggregation R-tree based algorithms. We conduct extensive experiments on both real and synthetic datasets to evaluate our proposals.
Author Xu, Linhao
Lu, Hua
Author_xml – sequence: 1
  givenname: Hua
  surname: Lu
  fullname: Lu, Hua
  email: luhua@cs.aau.dk
  organization: Department of Computer Science, Aalborg University, Denmark
– sequence: 2
  givenname: Linhao
  surname: Xu
  fullname: Xu, Linhao
  email: xulinhao@cn.ibm.com
  organization: IBM China Research Lab, China
BookMark eNpFkE1LAzEQQKNWsK39Bx7yB6JJ830sRWthRQ_2HLK7E62uiSTrwX9vWgXnMvAGhseboUlMERC6YvSaUapvrDaEEyWWhHHDDDGOmRM045UcgT5FU6YYI5wLe_Z_0HaCppTTJbFa8Au0KOWN1hFCaWmmqNn2EMd9-N7HFzy-An5IZcTbGIavA_cD3hXI-ClDgAyxAxxy-sA-4lUpKY_Q43UaBujGfYqX6Dz4ocDib8_R7u72eX1PmsfNdr1qSGHViciWWoCuCsney0Bp37XaawWy9YpJxbgVEDjtqeEgrYUOBFVCe2ODlVbwOVr-_i2fuXpDdm1K78Ux6g6xXI3luKsF3LGNO8TiPx6ZWic
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2010
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2010
DOI 10.1007/978-3-642-13818-8_18
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3642138187
9783642138188
EISSN 1611-3349
Editor Ludäscher, Bertram
Gertz, Michael
Editor_xml – sequence: 1
  givenname: Michael
  surname: Gertz
  fullname: Gertz, Michael
  email: gertz@informatik.uni-heidelberg.de
– sequence: 2
  givenname: Bertram
  surname: Ludäscher
  fullname: Ludäscher, Bertram
  email: ludaesch@ucdavis.edu
EndPage 251
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1138-5b09eec9745da5f00dcb7a76e5ba61561394ef30d083e599ece40647a89f95943
ISBN 3642138179
9783642138171
ISSN 0302-9743
IngestDate Wed Sep 17 03:39:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1138-5b09eec9745da5f00dcb7a76e5ba61561394ef30d083e599ece40647a89f95943
PageCount 19
ParticipantIDs springer_books_10_1007_978_3_642_13818_8_18
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 22nd International Conference, SSDBM 2010, Heidelberg, Germany, June 30–July 2, 2010. Proceedings
PublicationTitle Scientific and Statistical Database Management
PublicationYear 2010
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000446758
ssj0002792
Score 1.3583107
Snippet A conventional skyline query requires no query point, and usually employs a MIN or MAX annotation only to prefer smaller or larger values on each dimension. A...
SourceID springer
SourceType Publisher
StartPage 233
SubjectTerms Query Point
Skyline Computation
Skyline Point
Skyline Query
User Preference
Title Identifying the Most Influential User Preference from an Assorted Collection
URI http://link.springer.com/10.1007/978-3-642-13818-8_18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLMDAW7zlga0KSmo7qQcGxEMIFSaKukV24oiplUi68Ou5s-PGQIUESxRZVWPf55wv5_s-E3IhTaJgJulIySqOeCmTSA4Ei1KZmCquUmUq5Ds_PacPY_44EZOubMyySxp9WXws5ZX8B1VoA1yRJfsHZBd_Cg1wD_jCFRCG67fg92ua1XE4LJURK31c-SXuqdcuM32rGoXL05LiltHcLjbzhTeezNtP8zc1C-ePY_A6FhQGp0-zugFvYo80aTDNPoYhYgWHF6q1RBXwFgj4O8axNidRLIBHi5j6atRuWjzPGlsL1vfnSng3E-YhbDlbmIfwecj-LzJdljLCBwmqAiaBo2PgleG7xjk64xxxivKKzMmZeufKWLBOD5xQ7Y8lIKz6gIehyGIyjIZ5Mlwlq9CBHlm7vnscvS4ycbilnQUa8yip6PaeXK-QEeR7LZ1mUzeKgI257JE_9tdt2PKyTTaRykKRYwIG3iErZrpLtrzBaWvwXbIRqFLukVEAPQXoKUJPA-gpQk876ClCT9WUeuhpB_0-Gd_fvdw8RO2hG1GdQL8joWNpTAEDF6USVRyXhc5UlhqhFUS_EP1JbioWlxC7GyGlKQxHwrIaykoKydkB6U1nU3NIqB7EWaEyaC8LzhlXEBhpnQrFFArlpUek742T42tU515DG0yZsxxMmVtT5mjK4z_9-oSsd5P0lPSa97k5g_Cx0ect_p_8uma4
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Scientific+and+Statistical+Database+Management&rft.au=Lu%2C+Hua&rft.au=Xu%2C+Linhao&rft.atitle=Identifying+the+Most+Influential+User+Preference+from+an+Assorted+Collection&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2010-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642138171&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=233&rft.epage=251&rft_id=info:doi/10.1007%2F978-3-642-13818-8_18
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon