Fuzzy Frequent Pattern Mining in Spike Trains

We present a framework for characterizing spike (and spike-train) synchrony in parallel neuronal spike trains that is based on identifying spikes with what we call influence maps: real-valued functions describing an influence region around the corresponding spike times within which possibly graded s...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Intelligent Data Analysis XI pp. 289 - 300
Main Authors Picado Muiño, David, Castro León, Iván, Borgelt, Christian
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2012
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783642341557
3642341551
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-34156-4_27

Cover

Abstract We present a framework for characterizing spike (and spike-train) synchrony in parallel neuronal spike trains that is based on identifying spikes with what we call influence maps: real-valued functions describing an influence region around the corresponding spike times within which possibly graded synchrony with other spikes is defined. We formalize two models of synchrony in this framework: the bin-based model (the almost exclusively applied model in the literature) and a novel, alternative model based on a continuous, graded notion of synchrony, aimed at overcoming the drawbacks of the bin-based model. We study the task of identifying frequent (and synchronous) neuronal patterns from parallel spike trains in our framework, formalized as an instance of what we call the fuzzy frequent pattern mining problem (a generalization of standard frequent pattern mining) and briefly evaluate our synchrony models on this task.
AbstractList We present a framework for characterizing spike (and spike-train) synchrony in parallel neuronal spike trains that is based on identifying spikes with what we call influence maps: real-valued functions describing an influence region around the corresponding spike times within which possibly graded synchrony with other spikes is defined. We formalize two models of synchrony in this framework: the bin-based model (the almost exclusively applied model in the literature) and a novel, alternative model based on a continuous, graded notion of synchrony, aimed at overcoming the drawbacks of the bin-based model. We study the task of identifying frequent (and synchronous) neuronal patterns from parallel spike trains in our framework, formalized as an instance of what we call the fuzzy frequent pattern mining problem (a generalization of standard frequent pattern mining) and briefly evaluate our synchrony models on this task.
Author Picado Muiño, David
Castro León, Iván
Borgelt, Christian
Author_xml – sequence: 1
  givenname: David
  surname: Picado Muiño
  fullname: Picado Muiño, David
  email: david.picado@softcomputing.es
  organization: European Centre for Soft Computing, Mieres, Spain
– sequence: 2
  givenname: Iván
  surname: Castro León
  fullname: Castro León, Iván
  organization: European Centre for Soft Computing, Mieres, Spain
– sequence: 3
  givenname: Christian
  surname: Borgelt
  fullname: Borgelt, Christian
  organization: European Centre for Soft Computing, Mieres, Spain
BookMark eNpVkEFOwzAQRQ0UiVByAxa-gMHjcWJ7iSpSkIpAoqwtO3FQKHJKnC7o6UkLG2Yz0vvSaN6_JLPYx0DINfAb4FzdGqUZslIKhhKKkkkr1AnJJ4wTPDJ5SjIoARiiNGf_skLNSMaRC2aUxAuSp_TBp1FaGykzwqrdfv9NqyF87UIc6YsbxzBE-tTFLr7TLtLXbbcJdD24LqYrct66zxTyvz0nb9X9evHAVs_Lx8XdiiUAVMwbaURbc1co3ajWe9B1o53zAVojgKOTrag1GF8AFrIGDG0jm9LUwQlvCpwT8Xs3bYfpjTBY3_ebZIHbQyd2ErRoJ0V79LeHTvAHhuhQaQ
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2012
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2012
DOI 10.1007/978-3-642-34156-4_27
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9783642341564
364234156X
EISSN 1611-3349
Editor Hollmén, Jaakko
Klawonn, Frank
Tucker, Allan
Editor_xml – sequence: 1
  givenname: Jaakko
  surname: Hollmén
  fullname: Hollmén, Jaakko
  email: jaakko.hollmen@aalto.fi
– sequence: 2
  givenname: Frank
  surname: Klawonn
  fullname: Klawonn, Frank
  email: f.klawonn@ostfalia.de
– sequence: 3
  givenname: Allan
  surname: Tucker
  fullname: Tucker, Allan
  email: allan.tucker@brunel.ac.uk
EndPage 300
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1137-b9492fc0a578d7fbb18cd8aabe1f92103a4f2c819b51354c13efd4d69cea2b953
ISBN 9783642341557
3642341551
ISSN 0302-9743
IngestDate Wed Sep 17 03:52:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1137-b9492fc0a578d7fbb18cd8aabe1f92103a4f2c819b51354c13efd4d69cea2b953
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_642_34156_4_27
PublicationCentury 2000
PublicationDate 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 11th International Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012. Proceedings
PublicationTitle Advances in Intelligent Data Analysis XI
PublicationYear 2012
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000788944
ssj0002792
Score 1.41243
Snippet We present a framework for characterizing spike (and spike-train) synchrony in parallel neuronal spike trains that is based on identifying spikes with what we...
SourceID springer
SourceType Publisher
StartPage 289
Title Fuzzy Frequent Pattern Mining in Spike Trains
URI http://link.springer.com/10.1007/978-3-642-34156-4_27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6cgEOgwECBigHbpFRHTtfhx02NDSmdkJiQ71FtuNIFahBi4tE_3res-M0bBPSuERVlNb2-7nPL-_j9wh5L5hICy0TCseHoiLRjBaqMVTUxmSyEEIY9HcsLrKzK3G-TJeTyThraWPVB729s67kf1CFe4ArVsneA9nhR-EGfAZ84QoIw_WG8fu3m9WnF_vovctn_TwQa1rA0cod18hy8Ip-weKRNl5sVhgcP2HtjZR2jEN09rqN58Y9wH1N2C8XSmfDHjpBH_oPuyMmGPZX3w5ps93-BnvYpWhbbAGALsd44RpR4Fy__lx9N0iqvuodhSgq0x3N-2jGRWv9okLDiaB_xg4Kl-kxdlAEB2X8D_4uV0sChh1aN_lIA3JQ1_DC4zWg8Ro6Q95F7nlOg9b1XYj6A5w76tPbZ8M4HQQGozhaRkWV5HtkDyYwJQ-OT8_n3wYXHVhPhSsb7g925Fr0QSk_KywVCrNmnsxpt4pRmeZdQ94KvDt75vIJeYw1LhEWn4CAn5KJWR-Q_SDwqBf4AXm0GFh9u2eEOmyjgG3UYxt5bKPVOnLYRh7b5-Tq0-nlxzPat9ugHWM8p6oUZdLomQQlXueNUqzQdSGlMqwpEzbjUjSJBgtSpYynQjNumlrUWamNTFSZ8hdkum7X5iWJ6hQMX5WWXBUzYbSQSppcwVc0ICdn-SsSh9VX-AfqqsCeDbKqeAWyqpysKpTV63s9fUge7nbhGzK11xvzFgxHq971AP8Bcytgqg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Intelligent+Data+Analysis+XI&rft.au=Picado+Mui%C3%B1o%2C+David&rft.au=Castro+Le%C3%B3n%2C+Iv%C3%A1n&rft.au=Borgelt%2C+Christian&rft.atitle=Fuzzy+Frequent+Pattern+Mining+in+Spike+Trains&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2012-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642341557&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=289&rft.epage=300&rft_id=info:doi/10.1007%2F978-3-642-34156-4_27
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon