A Classification Scheme for Lymphocyte Segmentation in H&E Stained Histology Images
A technique for automating the detection of lymphocytes in histopathological images is presented. The proposed system takes Hematoxylin and Eosin (H&E) stained digital color images as input to identify lymphocytes. The process involves segmentation of cells from extracellular matrix, feature ext...
Saved in:
| Published in | Recognizing Patterns in Signals, Speech, Images and Videos pp. 235 - 243 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2010
|
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783642177101 3642177107 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-642-17711-8_24 |
Cover
| Summary: | A technique for automating the detection of lymphocytes in histopathological images is presented. The proposed system takes Hematoxylin and Eosin (H&E) stained digital color images as input to identify lymphocytes. The process involves segmentation of cells from extracellular matrix, feature extraction, classification and overlap resolution. Extracellular matrix segmentation is a two step process carried out on the HSV-equivalent of the image, using mean shift based clustering for color approximation followed by thresholding in the HSV space. Texture features extracted from the cells are used to train a SVM classifier that is used to classify lymphocytes and non-lymphocytes. A contour based overlap resolution technique is used to resolve overlapping lymphocytes. |
|---|---|
| ISBN: | 9783642177101 3642177107 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-642-17711-8_24 |