Remote Sensing Image Segmentation Using Mean Shift Method
Mean shift is a Feature space analysis algorithm widely used in natural scene images and medical image segmentation. It is also used in the high-resolution remote sensing image segmentation process. But one bottleneck of the mean shift procedure is the cost per iteration, especially in the huge data...
Saved in:
| Published in | Advanced Research on Computer Education, Simulation and Modeling pp. 86 - 90 |
|---|---|
| Main Authors | , |
| Format | Book Chapter |
| Language | English |
| Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2011
|
| Series | Communications in Computer and Information Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783642218019 3642218016 |
| ISSN | 1865-0929 1865-0937 |
| DOI | 10.1007/978-3-642-21802-6_14 |
Cover
| Abstract | Mean shift is a Feature space analysis algorithm widely used in natural scene images and medical image segmentation. It is also used in the high-resolution remote sensing image segmentation process. But one bottleneck of the mean shift procedure is the cost per iteration, especially in the huge data processing. We present an improved mean shift based image segmentation algorithm for the remote sensing images. Given initial parameter of windows, in each iteration step, the algorithm can adaptively adjust window size, which makes the iteration times reduce and speed up the segmentation process. Experiments proved the method can bring good result and satisfying performance. |
|---|---|
| AbstractList | Mean shift is a Feature space analysis algorithm widely used in natural scene images and medical image segmentation. It is also used in the high-resolution remote sensing image segmentation process. But one bottleneck of the mean shift procedure is the cost per iteration, especially in the huge data processing. We present an improved mean shift based image segmentation algorithm for the remote sensing images. Given initial parameter of windows, in each iteration step, the algorithm can adaptively adjust window size, which makes the iteration times reduce and speed up the segmentation process. Experiments proved the method can bring good result and satisfying performance. |
| Author | Deng, Fei Wan, Fang |
| Author_xml | – sequence: 1 givenname: Fang surname: Wan fullname: Wan, Fang email: wanfangwan@gmail.com organization: Computer school of Wuhan university, China – sequence: 2 givenname: Fei surname: Deng fullname: Deng, Fei organization: School of geodesy and Geomatics of Wuhan university, China |
| BookMark | eNpVUMtOwzAQNFAkSskfcMgPGHa9iRMfUcWjUhESpWfLSZw0QGxU5_-FExASe9mdGWk1M5ds4byzjF0j3CBAcauKkhOXmeACSxBcasxOWBJpiuTMyVO2xFLmHBQVZ_80VIs_TagLloTwDnHyEkqVL5l6tYMfbbqzLvSuSzeD6SbUDdaNZuy9S_ez8GyNS3eHvh3jOR58c8XOW_MZbPK7V2z_cP-2fuLbl8fN-m7LAyJlnERpqswUAAKaSgJJzImgKBqqZY2QS1GpFlpLdbQEps0yrC3WjVSmJmNoxcTP3_B1jEbsUVfefwSNoKd-dAyrSce4eu5CT_3QN2xlU3Y |
| ContentType | Book Chapter |
| Copyright | Springer-Verlag Berlin Heidelberg 2011 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2011 |
| DOI | 10.1007/978-3-642-21802-6_14 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783642218026 3642218024 |
| EISSN | 1865-0937 |
| Editor | Huang, Xiong Lin, Song |
| Editor_xml | – sequence: 1 givenname: Song surname: Lin fullname: Lin, Song email: 30978376@qq.com – sequence: 2 givenname: Xiong surname: Huang fullname: Huang, Xiong email: 499780828@qq.com |
| EndPage | 90 |
| GroupedDBID | 29F ALMA_UNASSIGNED_HOLDINGS RSU |
| ID | FETCH-LOGICAL-s1134-328ab4a70020db60361533077d3c6c10562b9f0fe3c8080af441ce1cd69ac3aa3 |
| ISBN | 9783642218019 3642218016 |
| ISSN | 1865-0929 |
| IngestDate | Tue Jul 29 19:43:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1134-328ab4a70020db60361533077d3c6c10562b9f0fe3c8080af441ce1cd69ac3aa3 |
| PageCount | 5 |
| ParticipantIDs | springer_books_10_1007_978_3_642_21802_6_14 |
| PublicationCentury | 2000 |
| PublicationDate | 2011 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – year: 2011 text: 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin, Heidelberg |
| PublicationPlace_xml | – name: Berlin, Heidelberg |
| PublicationSeriesTitle | Communications in Computer and Information Science |
| PublicationSubtitle | International Conference, CESM 2011, Wuhan, China, June 18-19, 2011. Proceedings, Part II |
| PublicationTitle | Advanced Research on Computer Education, Simulation and Modeling |
| PublicationYear | 2011 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| SSID | ssj0000580895 ssj0000530704 ssib054953581 |
| Score | 1.4131858 |
| Snippet | Mean shift is a Feature space analysis algorithm widely used in natural scene images and medical image segmentation. It is also used in the high-resolution... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 86 |
| SubjectTerms | adaptive adjustment Mean shift remote sensing segmentation |
| Title | Remote Sensing Image Segmentation Using Mean Shift Method |
| URI | http://link.springer.com/10.1007/978-3-642-21802-6_14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6F9FJxgEIR5VHtgVtkZGe9m_URtSCEoIcCFTdrX4YcYqQmXPrrO7OPZHmoEr1Y9ipKdudzxrPj75sh5MhYZzQ3thjX3BU1E6pohIRdSqeFUppxpz3b4oc4v60v7vjdYPCUq0sW-tj8eVNX8j-owhjgiirZdyC7_FIYgHPAF46AMBxfBL_P06yBXpze3ifyHOb9U5OGjLiB6c3pLHbpCrwK7H6THlk-mR5iWLUa-u6CDzhz0_ym-ukAWQcOpg9Mgxkyfq7d_SwqmPpRoCBcYX7_-mHaLeAUW1QH54VFlefPNSnzIDuMsw7k5KWgMnmePDXhBXp5aiKlJkf_qNzlVST1GAKNMrrO4Iel4EXZxGSIy8dCjZjob1MZbX8R-o6-eibkNBCBYiQseleIFtufr8HPD8mHk9OLy1_JDXGk3KaqcKFEPDrGOruWpfT9fJbTRNVQWoYIdZ1Wy8oUm2_N4tU7eB_a3GySdZS7UNShAAKfyMD1W2QjIUIjAtukCdjTiD312NMce-qxp4g99djTgP1ncnt2evPtvIh9N4p5VbG6YGOpdK0muJWwWkCMg5uCcjKxzAhTYcism67sHDNYlVR1EFIbVxkrGmWYUmyHDPvH3u0S2uhKGisrxbuq5pZpicYz1cRYLhtbfiGjtPYW_0nzNpXRBku1rAVLtd5SLVpq712f3icfVzflARkufj-5Q4ggF_prRPwvhjBkwg |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Research+on+Computer+Education%2C+Simulation+and+Modeling&rft.au=Wan%2C+Fang&rft.au=Deng%2C+Fei&rft.atitle=Remote+Sensing+Image+Segmentation+Using+Mean+Shift+Method&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2011-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642218019&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=86&rft.epage=90&rft_id=info:doi/10.1007%2F978-3-642-21802-6_14 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0929&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0929&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0929&client=summon |