An interior-point algorithm for P∗(κ)-LCP based on a new trigonometric kernel function with a double barrier term
In this paper, we present a new large-update interior-point algorithm for P ∗ ( κ ) -linear complementarity problem. The new algorithm is based on a trigonometric kernel function which differs from the existing kernel functions in which it has a double barrier term. By a simple analysis, we show tha...
Saved in:
| Published in | Journal of applied mathematics & computing Vol. 53; no. 1-2; pp. 487 - 506 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1598-5865 1865-2085 |
| DOI | 10.1007/s12190-015-0978-3 |
Cover
| Abstract | In this paper, we present a new large-update interior-point algorithm for
P
∗
(
κ
)
-linear complementarity problem. The new algorithm is based on a trigonometric kernel function which differs from the existing kernel functions in which it has a double barrier term. By a simple analysis, we show that the new algorithm enjoys
O
(
(
1
+
2
κ
)
n
2
3
log
n
ε
)
iteration complexity. This complexity estimate improves a result from El Ghami et al. (Optim Theory Decis Mak Oper Res Appl 31: 331–349,
2013
) and matches the currently best known complexity result for
P
∗
(
κ
)
-linear complementarity problem based on trigonometric kernel functions. |
|---|---|
| AbstractList | In this paper, we present a new large-update interior-point algorithm for
P
∗
(
κ
)
-linear complementarity problem. The new algorithm is based on a trigonometric kernel function which differs from the existing kernel functions in which it has a double barrier term. By a simple analysis, we show that the new algorithm enjoys
O
(
(
1
+
2
κ
)
n
2
3
log
n
ε
)
iteration complexity. This complexity estimate improves a result from El Ghami et al. (Optim Theory Decis Mak Oper Res Appl 31: 331–349,
2013
) and matches the currently best known complexity result for
P
∗
(
κ
)
-linear complementarity problem based on trigonometric kernel functions. |
| Author | Zhang, Mingwang Chen, Yan Li, Xin |
| Author_xml | – sequence: 1 givenname: Xin surname: Li fullname: Li, Xin email: sxlixin12@126.com organization: Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities – sequence: 2 givenname: Mingwang surname: Zhang fullname: Zhang, Mingwang organization: College of Science, China Three Gorges University – sequence: 3 givenname: Yan surname: Chen fullname: Chen, Yan organization: Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities |
| BookMark | eNotkE1OAyEYhompiW31AO5Y6gL9gMIMy6bxL2liF7omA8NU6hQamKZX8AbexUN4CE8ija6-N1_en-SZoFGIwSF0SeGGAlS3mTKqgAAVBFRVE36CxrSWgjCoxahooWoiyuMMTXLeAMhKgRqjYR6wD4NLPiayi0Xipl_H5Ie3Le5iwqufj8-r769rslyssGmya3EMuMHBHfCQ_DqGuHVFWPzuUnA97vbBDr54DqWjGNu4N70r0ZS8S7hMbc_Radf02V383yl6vb97WTyS5fPD02K-JJlSzol0FgxrO1CspS3YTljVmNpyY1oJlZzVwkrpJJ1x7qisWMU5Y9bwmZWdkTWfIvbXm3fJh7VLehP3KZRJTUEfuek_brpw00dumvNfCY9lCw |
| ContentType | Journal Article |
| Copyright | Korean Society for Computational and Applied Mathematics 2016 |
| Copyright_xml | – notice: Korean Society for Computational and Applied Mathematics 2016 |
| DOI | 10.1007/s12190-015-0978-3 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1865-2085 |
| EndPage | 506 |
| ExternalDocumentID | 10_1007_s12190_015_0978_3 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VS 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IZQ I~X J-C J0Z JBSCW JZLTJ K60 K6V K6~ K7- KOV L6V LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ZWQNP |
| ID | FETCH-LOGICAL-s1133-6ec0b2df092d1d0cf5c9ab8c3bbd6076485c66e61433e167273322cb34c6fb683 |
| IEDL.DBID | U2A |
| ISSN | 1598-5865 |
| IngestDate | Fri Feb 21 02:37:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Iteration complexity Kernel function 90C51 90C33 Interior-point algorithm Large-update Linear complementarity problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-s1133-6ec0b2df092d1d0cf5c9ab8c3bbd6076485c66e61433e167273322cb34c6fb683 |
| PageCount | 20 |
| ParticipantIDs | springer_journals_10_1007_s12190_015_0978_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20170200 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 2 year: 2017 text: 20170200 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Journal of applied mathematics & computing |
| PublicationTitleAbbrev | J. Appl. Math. Comput |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | HafshejaniSFFatemiMPeyghamMRAn interior-point method for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a trigonometric kernel functionJ. Appl. Math. Comput.201548111128334059810.1007/s12190-014-0794-11323.90070 PengJRoosCTerlakyTSelf-regular functions and new search directions for linear and semidefinite optimizationMath. Program.200293129171191227110.1007/s1010702002961007.90037 PeyghamiMRHafshejaniSFShirvaniLComplexity of interior-point methods for linear optimization based on a new trigonometric kernel functionJ. Comput. Appl. Math.20142557485309340510.1016/j.cam.2013.04.0391291.90313 Cai, X.Z., Wang, G.Q., El Ghami, M., Yue, Y.J.: Complexity analysis of primal-dual interior-point methods for linear optimization based on a new parametric kernel function with a trigonometric barrier term. Abstr. Appl. Anal. ID 710158 (2014) HarkerPTPangJSSimulation and Optimization of Large Systems1990Providence, RIAMS265284 KheirfamBPrimal-dual interior-point algorithm for semidefinite optimization based on a new kernel function with trigonometric barrier termNumer. Algorithms201261659680299522610.1007/s11075-012-9557-y1259.65091 BaiYQLesajaGRoosCA new class of polynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsPac. J. Optim.20084119411161.90507 GyeongMCLarge-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Inequal. Appl.201436311123347684 BaiYQEl GhamiMRoosCA comparative study of kernel functions for primal-dual interior-point algorithms in linear optimizationSIAM J. Optim.2004151101128211297810.1137/S10526234034231141077.90038 El GhamiMGuennounZABoulaSSteihaugTInterior-point methods for linear optimization based on a kernel function with a trigonometric barrier termJ. Comput. Appl. Math.201223636133623292349410.1016/j.cam.2011.05.0361242.90292 WangGQFanXJZhuDTWangDZNew complexity analysis of a full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCPOptim. Lett.2015911051119337367110.1007/s11590-014-0800-41331.90085 WangGQBaiYQA new primal-dual path-following interior-point algorithm for semi-definite optimizationJ. Math. Anal. Appl.200835333934910.1016/j.jmaa.2008.12.0161172.90011 Lee, Y.H., Cho, Y.Y., Cho, G.M.: Interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCP based on a new class of kernel functions. J. Glob. Optim. (2013). doi:10.1007/s10898-013-0072-z ChoGMA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsJ. Comput. Appl. Math.2008216265278242185510.1016/j.cam.2007.05.007 ChoGMKimMKA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} LCPs based on kernel functionsAppl. Math. Comput.200618221169118322825601108.65061 AminiKPeyghamiMRExploring complexity of large update interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problem based on kernel functionAppl. Math. Comput.200920750151324891041160.90009 ZhuDHZhangMWA full-Newton step infeasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Syst. Sci. Complex.20142710271044326484410.1007/s11424-014-1273-31326.90091 AminiKHaseliAA new proximity function generating the best known iteration bounds for both large-update and small-update interior-point methodsANZIAM J.200749259270240851910.1017/S14461811000128271142.90039 WangGQBaiYQPolynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} horizontal linear complementarity problemJ. Comput. Appl. Math.2009233224826310.1016/j.cam.2009.07.0141183.65072 PengJRoosCTerlakyTSelf-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms2002PrincetonPrinceton University Press1136.90045 El GhamiMPrimal dual interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a kernel function with a trigonometric barrier termOptim. Theory Decis. Mak. Oper. Res. Appl.2013313313493068945 KojimaMMegiddoNNomaTYoshiseAA Unified Approach to Interior Point Algorithms for Linear Complementarity Problems1991BerlinSpringer0745.90069 Ferris, M.C., Pang, J.S.: Complementarity and variational problems state of the art. In: Proceedings of the International Conference on Complementarity Problems. SIAM, Philadelphia (1997) PeyghamiMRAminiKA kernel function based interior-point methods for solving P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemActa Math. Sin. (Engl. Ser.)201026917611778267281610.1007/s10114-010-7529-51206.90195 WrightSJPrimal-Dual Interior-Point Methods1997PhiladelphiaSIAM10.1137/1.97816119714530863.65031 CottleRWPangJSStoneREThe Linear Complementarity Problem1992San Diego, CAAcademic Press Inc.0757.90078 MohamedAComplexity analysis of an interior point algorithm for the semidefinite optimization based on a kernel function with a double barrier termActa Math. Sin. (Engl. Ser.)201533154355633066641308.65086 WangGQYuCJTeoKLA full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemJ. Glob. Optim.20145918199318252110.1007/s10898-013-0090-x1300.90055 |
| References_xml | – reference: AminiKHaseliAA new proximity function generating the best known iteration bounds for both large-update and small-update interior-point methodsANZIAM J.200749259270240851910.1017/S14461811000128271142.90039 – reference: WangGQFanXJZhuDTWangDZNew complexity analysis of a full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCPOptim. Lett.2015911051119337367110.1007/s11590-014-0800-41331.90085 – reference: Lee, Y.H., Cho, Y.Y., Cho, G.M.: Interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCP based on a new class of kernel functions. J. Glob. Optim. (2013). doi:10.1007/s10898-013-0072-z – reference: PeyghamiMRAminiKA kernel function based interior-point methods for solving P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemActa Math. Sin. (Engl. Ser.)201026917611778267281610.1007/s10114-010-7529-51206.90195 – reference: ZhuDHZhangMWA full-Newton step infeasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Syst. Sci. Complex.20142710271044326484410.1007/s11424-014-1273-31326.90091 – reference: BaiYQLesajaGRoosCA new class of polynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsPac. J. Optim.20084119411161.90507 – reference: WangGQYuCJTeoKLA full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemJ. Glob. Optim.20145918199318252110.1007/s10898-013-0090-x1300.90055 – reference: ChoGMA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsJ. Comput. Appl. Math.2008216265278242185510.1016/j.cam.2007.05.007 – reference: WangGQBaiYQA new primal-dual path-following interior-point algorithm for semi-definite optimizationJ. Math. Anal. Appl.200835333934910.1016/j.jmaa.2008.12.0161172.90011 – reference: Cai, X.Z., Wang, G.Q., El Ghami, M., Yue, Y.J.: Complexity analysis of primal-dual interior-point methods for linear optimization based on a new parametric kernel function with a trigonometric barrier term. Abstr. Appl. Anal. ID 710158 (2014) – reference: HarkerPTPangJSSimulation and Optimization of Large Systems1990Providence, RIAMS265284 – reference: El GhamiMPrimal dual interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a kernel function with a trigonometric barrier termOptim. Theory Decis. Mak. Oper. Res. Appl.2013313313493068945 – reference: AminiKPeyghamiMRExploring complexity of large update interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problem based on kernel functionAppl. Math. Comput.200920750151324891041160.90009 – reference: KheirfamBPrimal-dual interior-point algorithm for semidefinite optimization based on a new kernel function with trigonometric barrier termNumer. Algorithms201261659680299522610.1007/s11075-012-9557-y1259.65091 – reference: BaiYQEl GhamiMRoosCA comparative study of kernel functions for primal-dual interior-point algorithms in linear optimizationSIAM J. Optim.2004151101128211297810.1137/S10526234034231141077.90038 – reference: El GhamiMGuennounZABoulaSSteihaugTInterior-point methods for linear optimization based on a kernel function with a trigonometric barrier termJ. Comput. Appl. Math.201223636133623292349410.1016/j.cam.2011.05.0361242.90292 – reference: Ferris, M.C., Pang, J.S.: Complementarity and variational problems state of the art. In: Proceedings of the International Conference on Complementarity Problems. SIAM, Philadelphia (1997) – reference: ChoGMKimMKA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} LCPs based on kernel functionsAppl. Math. Comput.200618221169118322825601108.65061 – reference: GyeongMCLarge-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Inequal. Appl.201436311123347684 – reference: HafshejaniSFFatemiMPeyghamMRAn interior-point method for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a trigonometric kernel functionJ. Appl. Math. Comput.201548111128334059810.1007/s12190-014-0794-11323.90070 – reference: KojimaMMegiddoNNomaTYoshiseAA Unified Approach to Interior Point Algorithms for Linear Complementarity Problems1991BerlinSpringer0745.90069 – reference: MohamedAComplexity analysis of an interior point algorithm for the semidefinite optimization based on a kernel function with a double barrier termActa Math. Sin. (Engl. Ser.)201533154355633066641308.65086 – reference: WrightSJPrimal-Dual Interior-Point Methods1997PhiladelphiaSIAM10.1137/1.97816119714530863.65031 – reference: PengJRoosCTerlakyTSelf-regular functions and new search directions for linear and semidefinite optimizationMath. Program.200293129171191227110.1007/s1010702002961007.90037 – reference: PengJRoosCTerlakyTSelf-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms2002PrincetonPrinceton University Press1136.90045 – reference: CottleRWPangJSStoneREThe Linear Complementarity Problem1992San Diego, CAAcademic Press Inc.0757.90078 – reference: WangGQBaiYQPolynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} horizontal linear complementarity problemJ. Comput. Appl. Math.2009233224826310.1016/j.cam.2009.07.0141183.65072 – reference: PeyghamiMRHafshejaniSFShirvaniLComplexity of interior-point methods for linear optimization based on a new trigonometric kernel functionJ. Comput. Appl. Math.20142557485309340510.1016/j.cam.2013.04.0391291.90313 |
| SSID | ssj0067909 |
| Score | 2.0968704 |
| Snippet | In this paper, we present a new large-update interior-point algorithm for
P
∗
(
κ
)
-linear complementarity problem. The new algorithm is based on a... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 487 |
| SubjectTerms | Computational Mathematics and Numerical Analysis Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Original Research Theory of Computation |
| Title | An interior-point algorithm for P∗(κ)-LCP based on a new trigonometric kernel function with a double barrier term |
| URI | https://link.springer.com/article/10.1007/s12190-015-0978-3 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1865-2085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067909 issn: 1598-5865 databaseCode: AFBBN dateStart: 19940901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1865-2085 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0067909 issn: 1598-5865 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1865-2085 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0067909 issn: 1598-5865 databaseCode: 8FG dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1865-2085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067909 issn: 1598-5865 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1865-2085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067909 issn: 1598-5865 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TsNAEF1B0kCB-IpvtAUFCK3k72ZdOlFCBCRKQaRQWdmPARFsZDt34AbchUNwCE7CjLFJAQ2VXay3mJmdN8_zWUJOISZWccBjFgOjZV5sWXikfAbBqAabbgvtYXPycMQHE-9q6k-rPu68rnavU5Klp142uznY9mzhRmVOf5U0fZzmBUY8ccLa_fJ2UNZ1AExjSxH361TmX1v8Sn-WqNLfJBtVOEjDb_1tkRWTbJP14c8s1XyHFGFCcahD9phm7CWFVzqb36dA6h-eKYScdPz5-nb28X7ObrpjiqikaZrQGYWAmRZAvrFtAe_NUvTJZImZU8Qy1AfFn7CwUKcLOTfwaYbX11F01rtk0u_ddgesuiuB5TbQTMaNsqSjYytwtK0tFfsqmEmhXCk1t9rcE77i3AAYu66xMf3qwlFW0vUUjyUX7h5pJGli9gl1HQO0KcZRdsILhC9mNrAqxxjh2Aro2QG5qIUWVQafR8vpxyjiCEQcoYgj9_Bfq4_ImoO4WZZFH5NGkS3MCaB-IVukGfY7nRE-L--ue61S619Y2Kjk |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TsNAEF1BUgAFf8SfLShAyJG_G7uMooRAPkqRSKGyvOs1RAk2sp2GE3AD7sIhOAQnYcaxiQQ06VysV6vx7Lx5nh8hl-ATi8BhgRIAo1XMQFXxSlkKOKM-6HTV9k0sTu72WGto3o-sUV7HnRTZ7kVIMrPUi2I3HcueVdwoi-mvkrIJ_EQvkXLt9qHdKAwwqzpZZgcANRYVMasIZv63yZ8AaIYrzS0yKE40TyeZVGYpr4jXX80alzzyNtnM_UxamyvGDlmR4S7Z6P40aU32SFoLKXaLiMdRrLxE8Ei96WMUj9OnZwq-LO1_vb1ffX5cK516nyLc-TQKqUfBE6cpsHqsh8CBXIJOZBzKKUWQxA9N8e8uLPSjGZ9KeDXGuXgUUWCfDJuNQb2l5EMYlEQD_qowKVSu-4Hq6L7mqyKwhONxWxic-0ytMtO2BGMSUN4wpIZxXQNshOCGKVjAmW0ckFIYhfKQUEOXwMcC7JFnm45t2Z4GdE2X0tY1AbzviNwUYnTzm5S4i7bKKEsXZOmiLF3jeKnVF2StNeh23M5dr31C1nUE5yz3-pSU0ngmz8C1SPl5rkrfC4_FhQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TsNAEF1BkBAUiK_4swUFCFmx1_bGLqNAFCCJUhApnZX9ASLYke3cgRtwFw7BITgJM45NCmjoXKy3mJndmbczb4aQc4iJpQm5sQwgWsszto1HyrcgGFVg041AeUhO7vV5Z-jdjfxROec0q6rdq5TknNOAXZrivD5Vpr4gvjGkQNu4aZHfXyYrHvZJAIMesmZ1FfNGWNR4gMtGehH3q7TmX1v8SoUWHqa9STbK0JA257rcIks63ibrvZ--qtkOyZsxxQYP6XOSWtMEPul48pgAwH96pRB-0sHX2_vF58el1W0NKHooRZOYjikEzzQHII4UBpyhJemLTmM9oejXUDcUH2RhoUpmYqLh1xRH2VG8uHfJsH3z0OpY5dwEK3MAclpcS1swZeyQKUfZ0vgyHItAukIobje4F_iScw2O2XW1g6lYF461FK4nuRE8cPdILU5ivU-oyzRAKINt7QIvDPxg7ADCYloHzJEA1Q7IVSW0qDT-LFp0QkYRRyDiCEUcuYf_Wn1GVgfX7ah7278_ImsM3WlRLX1Mank60ycQDOTitFD4N-RJrPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interior-point+algorithm+for+P%E2%88%97%28%CE%BA%29-LCP+based+on+a+new+trigonometric+kernel+function+with+a+double+barrier+term&rft.jtitle=Journal+of+applied+mathematics+%26+computing&rft.au=Li%2C+Xin&rft.au=Zhang%2C+Mingwang&rft.au=Chen%2C+Yan&rft.date=2017-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1598-5865&rft.eissn=1865-2085&rft.volume=53&rft.issue=1-2&rft.spage=487&rft.epage=506&rft_id=info:doi/10.1007%2Fs12190-015-0978-3&rft.externalDocID=10_1007_s12190_015_0978_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5865&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5865&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5865&client=summon |