An interior-point algorithm for P∗(κ)-LCP based on a new trigonometric kernel function with a double barrier term

In this paper, we present a new large-update interior-point algorithm for P ∗ ( κ ) -linear complementarity problem. The new algorithm is based on a trigonometric kernel function which differs from the existing kernel functions in which it has a double barrier term. By a simple analysis, we show tha...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied mathematics & computing Vol. 53; no. 1-2; pp. 487 - 506
Main Authors Li, Xin, Zhang, Mingwang, Chen, Yan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Subjects
Online AccessGet full text
ISSN1598-5865
1865-2085
DOI10.1007/s12190-015-0978-3

Cover

Abstract In this paper, we present a new large-update interior-point algorithm for P ∗ ( κ ) -linear complementarity problem. The new algorithm is based on a trigonometric kernel function which differs from the existing kernel functions in which it has a double barrier term. By a simple analysis, we show that the new algorithm enjoys O ( ( 1 + 2 κ ) n 2 3 log n ε ) iteration complexity. This complexity estimate improves a result from El Ghami et al. (Optim Theory Decis Mak Oper Res Appl 31: 331–349, 2013 ) and matches the currently best known complexity result for P ∗ ( κ ) -linear complementarity problem based on trigonometric kernel functions.
AbstractList In this paper, we present a new large-update interior-point algorithm for P ∗ ( κ ) -linear complementarity problem. The new algorithm is based on a trigonometric kernel function which differs from the existing kernel functions in which it has a double barrier term. By a simple analysis, we show that the new algorithm enjoys O ( ( 1 + 2 κ ) n 2 3 log n ε ) iteration complexity. This complexity estimate improves a result from El Ghami et al. (Optim Theory Decis Mak Oper Res Appl 31: 331–349, 2013 ) and matches the currently best known complexity result for P ∗ ( κ ) -linear complementarity problem based on trigonometric kernel functions.
Author Zhang, Mingwang
Chen, Yan
Li, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  email: sxlixin12@126.com
  organization: Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities
– sequence: 2
  givenname: Mingwang
  surname: Zhang
  fullname: Zhang, Mingwang
  organization: College of Science, China Three Gorges University
– sequence: 3
  givenname: Yan
  surname: Chen
  fullname: Chen, Yan
  organization: Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities
BookMark eNotkE1OAyEYhompiW31AO5Y6gL9gMIMy6bxL2liF7omA8NU6hQamKZX8AbexUN4CE8ija6-N1_en-SZoFGIwSF0SeGGAlS3mTKqgAAVBFRVE36CxrSWgjCoxahooWoiyuMMTXLeAMhKgRqjYR6wD4NLPiayi0Xipl_H5Ie3Le5iwqufj8-r769rslyssGmya3EMuMHBHfCQ_DqGuHVFWPzuUnA97vbBDr54DqWjGNu4N70r0ZS8S7hMbc_Radf02V383yl6vb97WTyS5fPD02K-JJlSzol0FgxrO1CspS3YTljVmNpyY1oJlZzVwkrpJJ1x7qisWMU5Y9bwmZWdkTWfIvbXm3fJh7VLehP3KZRJTUEfuek_brpw00dumvNfCY9lCw
ContentType Journal Article
Copyright Korean Society for Computational and Applied Mathematics 2016
Copyright_xml – notice: Korean Society for Computational and Applied Mathematics 2016
DOI 10.1007/s12190-015-0978-3
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1865-2085
EndPage 506
ExternalDocumentID 10_1007_s12190_015_0978_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ID FETCH-LOGICAL-s1133-6ec0b2df092d1d0cf5c9ab8c3bbd6076485c66e61433e167273322cb34c6fb683
IEDL.DBID U2A
ISSN 1598-5865
IngestDate Fri Feb 21 02:37:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Iteration complexity
Kernel function
90C51
90C33
Interior-point algorithm
Large-update
Linear complementarity problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-s1133-6ec0b2df092d1d0cf5c9ab8c3bbd6076485c66e61433e167273322cb34c6fb683
PageCount 20
ParticipantIDs springer_journals_10_1007_s12190_015_0978_3
PublicationCentury 2000
PublicationDate 20170200
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 2
  year: 2017
  text: 20170200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Journal of applied mathematics & computing
PublicationTitleAbbrev J. Appl. Math. Comput
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References HafshejaniSFFatemiMPeyghamMRAn interior-point method for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a trigonometric kernel functionJ. Appl. Math. Comput.201548111128334059810.1007/s12190-014-0794-11323.90070
PengJRoosCTerlakyTSelf-regular functions and new search directions for linear and semidefinite optimizationMath. Program.200293129171191227110.1007/s1010702002961007.90037
PeyghamiMRHafshejaniSFShirvaniLComplexity of interior-point methods for linear optimization based on a new trigonometric kernel functionJ. Comput. Appl. Math.20142557485309340510.1016/j.cam.2013.04.0391291.90313
Cai, X.Z., Wang, G.Q., El Ghami, M., Yue, Y.J.: Complexity analysis of primal-dual interior-point methods for linear optimization based on a new parametric kernel function with a trigonometric barrier term. Abstr. Appl. Anal. ID 710158 (2014)
HarkerPTPangJSSimulation and Optimization of Large Systems1990Providence, RIAMS265284
KheirfamBPrimal-dual interior-point algorithm for semidefinite optimization based on a new kernel function with trigonometric barrier termNumer. Algorithms201261659680299522610.1007/s11075-012-9557-y1259.65091
BaiYQLesajaGRoosCA new class of polynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsPac. J. Optim.20084119411161.90507
GyeongMCLarge-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Inequal. Appl.201436311123347684
BaiYQEl GhamiMRoosCA comparative study of kernel functions for primal-dual interior-point algorithms in linear optimizationSIAM J. Optim.2004151101128211297810.1137/S10526234034231141077.90038
El GhamiMGuennounZABoulaSSteihaugTInterior-point methods for linear optimization based on a kernel function with a trigonometric barrier termJ. Comput. Appl. Math.201223636133623292349410.1016/j.cam.2011.05.0361242.90292
WangGQFanXJZhuDTWangDZNew complexity analysis of a full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCPOptim. Lett.2015911051119337367110.1007/s11590-014-0800-41331.90085
WangGQBaiYQA new primal-dual path-following interior-point algorithm for semi-definite optimizationJ. Math. Anal. Appl.200835333934910.1016/j.jmaa.2008.12.0161172.90011
Lee, Y.H., Cho, Y.Y., Cho, G.M.: Interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCP based on a new class of kernel functions. J. Glob. Optim. (2013). doi:10.1007/s10898-013-0072-z
ChoGMA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsJ. Comput. Appl. Math.2008216265278242185510.1016/j.cam.2007.05.007
ChoGMKimMKA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} LCPs based on kernel functionsAppl. Math. Comput.200618221169118322825601108.65061
AminiKPeyghamiMRExploring complexity of large update interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problem based on kernel functionAppl. Math. Comput.200920750151324891041160.90009
ZhuDHZhangMWA full-Newton step infeasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Syst. Sci. Complex.20142710271044326484410.1007/s11424-014-1273-31326.90091
AminiKHaseliAA new proximity function generating the best known iteration bounds for both large-update and small-update interior-point methodsANZIAM J.200749259270240851910.1017/S14461811000128271142.90039
WangGQBaiYQPolynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} horizontal linear complementarity problemJ. Comput. Appl. Math.2009233224826310.1016/j.cam.2009.07.0141183.65072
PengJRoosCTerlakyTSelf-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms2002PrincetonPrinceton University Press1136.90045
El GhamiMPrimal dual interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a kernel function with a trigonometric barrier termOptim. Theory Decis. Mak. Oper. Res. Appl.2013313313493068945
KojimaMMegiddoNNomaTYoshiseAA Unified Approach to Interior Point Algorithms for Linear Complementarity Problems1991BerlinSpringer0745.90069
Ferris, M.C., Pang, J.S.: Complementarity and variational problems state of the art. In: Proceedings of the International Conference on Complementarity Problems. SIAM, Philadelphia (1997)
PeyghamiMRAminiKA kernel function based interior-point methods for solving P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemActa Math. Sin. (Engl. Ser.)201026917611778267281610.1007/s10114-010-7529-51206.90195
WrightSJPrimal-Dual Interior-Point Methods1997PhiladelphiaSIAM10.1137/1.97816119714530863.65031
CottleRWPangJSStoneREThe Linear Complementarity Problem1992San Diego, CAAcademic Press Inc.0757.90078
MohamedAComplexity analysis of an interior point algorithm for the semidefinite optimization based on a kernel function with a double barrier termActa Math. Sin. (Engl. Ser.)201533154355633066641308.65086
WangGQYuCJTeoKLA full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemJ. Glob. Optim.20145918199318252110.1007/s10898-013-0090-x1300.90055
References_xml – reference: AminiKHaseliAA new proximity function generating the best known iteration bounds for both large-update and small-update interior-point methodsANZIAM J.200749259270240851910.1017/S14461811000128271142.90039
– reference: WangGQFanXJZhuDTWangDZNew complexity analysis of a full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCPOptim. Lett.2015911051119337367110.1007/s11590-014-0800-41331.90085
– reference: Lee, Y.H., Cho, Y.Y., Cho, G.M.: Interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-LCP based on a new class of kernel functions. J. Glob. Optim. (2013). doi:10.1007/s10898-013-0072-z
– reference: PeyghamiMRAminiKA kernel function based interior-point methods for solving P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemActa Math. Sin. (Engl. Ser.)201026917611778267281610.1007/s10114-010-7529-51206.90195
– reference: ZhuDHZhangMWA full-Newton step infeasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Syst. Sci. Complex.20142710271044326484410.1007/s11424-014-1273-31326.90091
– reference: BaiYQLesajaGRoosCA new class of polynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsPac. J. Optim.20084119411161.90507
– reference: WangGQYuCJTeoKLA full-Newton step feasible interior-point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problemJ. Glob. Optim.20145918199318252110.1007/s10898-013-0090-x1300.90055
– reference: ChoGMA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemsJ. Comput. Appl. Math.2008216265278242185510.1016/j.cam.2007.05.007
– reference: WangGQBaiYQA new primal-dual path-following interior-point algorithm for semi-definite optimizationJ. Math. Anal. Appl.200835333934910.1016/j.jmaa.2008.12.0161172.90011
– reference: Cai, X.Z., Wang, G.Q., El Ghami, M., Yue, Y.J.: Complexity analysis of primal-dual interior-point methods for linear optimization based on a new parametric kernel function with a trigonometric barrier term. Abstr. Appl. Anal. ID 710158 (2014)
– reference: HarkerPTPangJSSimulation and Optimization of Large Systems1990Providence, RIAMS265284
– reference: El GhamiMPrimal dual interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a kernel function with a trigonometric barrier termOptim. Theory Decis. Mak. Oper. Res. Appl.2013313313493068945
– reference: AminiKPeyghamiMRExploring complexity of large update interior-point methods for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problem based on kernel functionAppl. Math. Comput.200920750151324891041160.90009
– reference: KheirfamBPrimal-dual interior-point algorithm for semidefinite optimization based on a new kernel function with trigonometric barrier termNumer. Algorithms201261659680299522610.1007/s11075-012-9557-y1259.65091
– reference: BaiYQEl GhamiMRoosCA comparative study of kernel functions for primal-dual interior-point algorithms in linear optimizationSIAM J. Optim.2004151101128211297810.1137/S10526234034231141077.90038
– reference: El GhamiMGuennounZABoulaSSteihaugTInterior-point methods for linear optimization based on a kernel function with a trigonometric barrier termJ. Comput. Appl. Math.201223636133623292349410.1016/j.cam.2011.05.0361242.90292
– reference: Ferris, M.C., Pang, J.S.: Complementarity and variational problems state of the art. In: Proceedings of the International Conference on Complementarity Problems. SIAM, Philadelphia (1997)
– reference: ChoGMKimMKA new large-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} LCPs based on kernel functionsAppl. Math. Comput.200618221169118322825601108.65061
– reference: GyeongMCLarge-update interior point algorithm for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} linear complementarity problemJ. Inequal. Appl.201436311123347684
– reference: HafshejaniSFFatemiMPeyghamMRAn interior-point method for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document}-linear complementarity problem based on a trigonometric kernel functionJ. Appl. Math. Comput.201548111128334059810.1007/s12190-014-0794-11323.90070
– reference: KojimaMMegiddoNNomaTYoshiseAA Unified Approach to Interior Point Algorithms for Linear Complementarity Problems1991BerlinSpringer0745.90069
– reference: MohamedAComplexity analysis of an interior point algorithm for the semidefinite optimization based on a kernel function with a double barrier termActa Math. Sin. (Engl. Ser.)201533154355633066641308.65086
– reference: WrightSJPrimal-Dual Interior-Point Methods1997PhiladelphiaSIAM10.1137/1.97816119714530863.65031
– reference: PengJRoosCTerlakyTSelf-regular functions and new search directions for linear and semidefinite optimizationMath. Program.200293129171191227110.1007/s1010702002961007.90037
– reference: PengJRoosCTerlakyTSelf-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms2002PrincetonPrinceton University Press1136.90045
– reference: CottleRWPangJSStoneREThe Linear Complementarity Problem1992San Diego, CAAcademic Press Inc.0757.90078
– reference: WangGQBaiYQPolynomial interior-point algorithms for P*(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\ast (\kappa )$$\end{document} horizontal linear complementarity problemJ. Comput. Appl. Math.2009233224826310.1016/j.cam.2009.07.0141183.65072
– reference: PeyghamiMRHafshejaniSFShirvaniLComplexity of interior-point methods for linear optimization based on a new trigonometric kernel functionJ. Comput. Appl. Math.20142557485309340510.1016/j.cam.2013.04.0391291.90313
SSID ssj0067909
Score 2.0968704
Snippet In this paper, we present a new large-update interior-point algorithm for P ∗ ( κ ) -linear complementarity problem. The new algorithm is based on a...
SourceID springer
SourceType Publisher
StartPage 487
SubjectTerms Computational Mathematics and Numerical Analysis
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Original Research
Theory of Computation
Title An interior-point algorithm for P∗(κ)-LCP based on a new trigonometric kernel function with a double barrier term
URI https://link.springer.com/article/10.1007/s12190-015-0978-3
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1865-2085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: AFBBN
  dateStart: 19940901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1865-2085
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1865-2085
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: 8FG
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1865-2085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1865-2085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TsNAEF1B0kCB-IpvtAUFCK3k72ZdOlFCBCRKQaRQWdmPARFsZDt34AbchUNwCE7CjLFJAQ2VXay3mJmdN8_zWUJOISZWccBjFgOjZV5sWXikfAbBqAabbgvtYXPycMQHE-9q6k-rPu68rnavU5Klp142uznY9mzhRmVOf5U0fZzmBUY8ccLa_fJ2UNZ1AExjSxH361TmX1v8Sn-WqNLfJBtVOEjDb_1tkRWTbJP14c8s1XyHFGFCcahD9phm7CWFVzqb36dA6h-eKYScdPz5-nb28X7ObrpjiqikaZrQGYWAmRZAvrFtAe_NUvTJZImZU8Qy1AfFn7CwUKcLOTfwaYbX11F01rtk0u_ddgesuiuB5TbQTMaNsqSjYytwtK0tFfsqmEmhXCk1t9rcE77i3AAYu66xMf3qwlFW0vUUjyUX7h5pJGli9gl1HQO0KcZRdsILhC9mNrAqxxjh2Aro2QG5qIUWVQafR8vpxyjiCEQcoYgj9_Bfq4_ImoO4WZZFH5NGkS3MCaB-IVukGfY7nRE-L--ue61S619Y2Kjk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TsNAEF1BUgAFf8SfLShAyJG_G7uMooRAPkqRSKGyvOs1RAk2sp2GE3AD7sIhOAQnYcaxiQQ06VysV6vx7Lx5nh8hl-ATi8BhgRIAo1XMQFXxSlkKOKM-6HTV9k0sTu72WGto3o-sUV7HnRTZ7kVIMrPUi2I3HcueVdwoi-mvkrIJ_EQvkXLt9qHdKAwwqzpZZgcANRYVMasIZv63yZ8AaIYrzS0yKE40TyeZVGYpr4jXX80alzzyNtnM_UxamyvGDlmR4S7Z6P40aU32SFoLKXaLiMdRrLxE8Ei96WMUj9OnZwq-LO1_vb1ffX5cK516nyLc-TQKqUfBE6cpsHqsh8CBXIJOZBzKKUWQxA9N8e8uLPSjGZ9KeDXGuXgUUWCfDJuNQb2l5EMYlEQD_qowKVSu-4Hq6L7mqyKwhONxWxic-0ytMtO2BGMSUN4wpIZxXQNshOCGKVjAmW0ckFIYhfKQUEOXwMcC7JFnm45t2Z4GdE2X0tY1AbzviNwUYnTzm5S4i7bKKEsXZOmiLF3jeKnVF2StNeh23M5dr31C1nUE5yz3-pSU0ngmz8C1SPl5rkrfC4_FhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TsNAEF1BkBAUiK_4swUFCFmx1_bGLqNAFCCJUhApnZX9ASLYke3cgRtwFw7BITgJM45NCmjoXKy3mJndmbczb4aQc4iJpQm5sQwgWsszto1HyrcgGFVg041AeUhO7vV5Z-jdjfxROec0q6rdq5TknNOAXZrivD5Vpr4gvjGkQNu4aZHfXyYrHvZJAIMesmZ1FfNGWNR4gMtGehH3q7TmX1v8SoUWHqa9STbK0JA257rcIks63ibrvZ--qtkOyZsxxQYP6XOSWtMEPul48pgAwH96pRB-0sHX2_vF58el1W0NKHooRZOYjikEzzQHII4UBpyhJemLTmM9oejXUDcUH2RhoUpmYqLh1xRH2VG8uHfJsH3z0OpY5dwEK3MAclpcS1swZeyQKUfZ0vgyHItAukIobje4F_iScw2O2XW1g6lYF461FK4nuRE8cPdILU5ivU-oyzRAKINt7QIvDPxg7ADCYloHzJEA1Q7IVSW0qDT-LFp0QkYRRyDiCEUcuYf_Wn1GVgfX7ah7278_ImsM3WlRLX1Mank60ycQDOTitFD4N-RJrPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interior-point+algorithm+for+P%E2%88%97%28%CE%BA%29-LCP+based+on+a+new+trigonometric+kernel+function+with+a+double+barrier+term&rft.jtitle=Journal+of+applied+mathematics+%26+computing&rft.au=Li%2C+Xin&rft.au=Zhang%2C+Mingwang&rft.au=Chen%2C+Yan&rft.date=2017-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1598-5865&rft.eissn=1865-2085&rft.volume=53&rft.issue=1-2&rft.spage=487&rft.epage=506&rft_id=info:doi/10.1007%2Fs12190-015-0978-3&rft.externalDocID=10_1007_s12190_015_0978_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5865&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5865&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5865&client=summon