Action Recognition in Video by Sparse Representation on Covariance Manifolds of Silhouette Tunnels

A novel framework for action recognition in video using empirical covariance matrices of bags of low-dimensional feature vectors is developed. The feature vectors are extracted from segments of silhouette tunnels of moving objects and coarsely capture their shapes. The matrix logarithm is used to ma...

Full description

Saved in:
Bibliographic Details
Published inRecognizing Patterns in Signals, Speech, Images and Videos pp. 294 - 305
Main Authors Guo, Kai, Ishwar, Prakash, Konrad, Janusz
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2010
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783642177101
3642177107
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-17711-8_30

Cover

Abstract A novel framework for action recognition in video using empirical covariance matrices of bags of low-dimensional feature vectors is developed. The feature vectors are extracted from segments of silhouette tunnels of moving objects and coarsely capture their shapes. The matrix logarithm is used to map the segment covariance matrices, which live in a nonlinear Riemannian manifold, to the vector space of symmetric matrices. A recently developed sparse linear representation framework for dictionary-based classification is then applied to the log-covariance matrices. The log-covariance matrix of a query segment is approximated by a sparse linear combination of the log-covariance matrices of training segments and the sparse coefficients are used to determine the action label of the query segment. This approach is tested on the Weizmann and the UT-Tower human action datasets. The new approach attains a segment-level classification rate of 96.74% for the Weizmann dataset and 96.15% for the UT-Tower dataset. Additionally, the proposed method is computationally and memory efficient and easy to implement.
AbstractList A novel framework for action recognition in video using empirical covariance matrices of bags of low-dimensional feature vectors is developed. The feature vectors are extracted from segments of silhouette tunnels of moving objects and coarsely capture their shapes. The matrix logarithm is used to map the segment covariance matrices, which live in a nonlinear Riemannian manifold, to the vector space of symmetric matrices. A recently developed sparse linear representation framework for dictionary-based classification is then applied to the log-covariance matrices. The log-covariance matrix of a query segment is approximated by a sparse linear combination of the log-covariance matrices of training segments and the sparse coefficients are used to determine the action label of the query segment. This approach is tested on the Weizmann and the UT-Tower human action datasets. The new approach attains a segment-level classification rate of 96.74% for the Weizmann dataset and 96.15% for the UT-Tower dataset. Additionally, the proposed method is computationally and memory efficient and easy to implement.
Author Guo, Kai
Ishwar, Prakash
Konrad, Janusz
Author_xml – sequence: 1
  givenname: Kai
  surname: Guo
  fullname: Guo, Kai
  organization: Department of Electrical and Computer Engineering, Boston University, Boston, USA
– sequence: 2
  givenname: Prakash
  surname: Ishwar
  fullname: Ishwar, Prakash
  organization: Department of Electrical and Computer Engineering, Boston University, Boston, USA
– sequence: 3
  givenname: Janusz
  surname: Konrad
  fullname: Konrad, Janusz
  organization: Department of Electrical and Computer Engineering, Boston University, Boston, USA
BookMark eNo1kN1OwzAMhQMMiW3sDbjICwScpG3ay2niTxpCYoPbKG3cEaiSqemQeHuyArYlW-cc-eKbkYkPHgm54nDNAdRNpUomWZEJxpXinJVawgmZyaSMQn5KprxIhpRZdUYWKf_vAZ-QKUgQrFKZvCCLGD8gVaaKQsCU1MtmcMHTF2zCzrvxdp6-OYuB1t90szd9xGTve4zoBzMm0qzCl-md8Q3SJ-NdGzobaWjpxnXv4YDDgHR78B67eEnOW9NFXPztOXm9u92uHtj6-f5xtVyzyLkEJrgFnqe2TcubskWhRK5AWMi5kk1tq6yAGkReS7QoUQhZQlaqQlhVGtHKORG_f-O-d36Hva5D-Iyagz5S1ImKljpx0SM0faQofwAI3GIh
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2010
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2010
DOI 10.1007/978-3-642-17711-8_30
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3642177115
9783642177118
EISSN 1611-3349
Editor Ünay, Devrim
Çataltepe, Zehra
Aksoy, Selim
Editor_xml – sequence: 1
  givenname: Devrim
  surname: Ünay
  fullname: Ünay, Devrim
  email: devrim.unay@bahcesehir.edu.tr
– sequence: 2
  givenname: Zehra
  surname: Çataltepe
  fullname: Çataltepe, Zehra
  email: cataltepe@itu.edu.tr
– sequence: 3
  givenname: Selim
  surname: Aksoy
  fullname: Aksoy, Selim
  email: saksoy@cs.bilkent.edu.tr
EndPage 305
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1130-21d015151dcf1c8fe2725702d05173cbd9460b025b3ede3e2238048762d78a2f3
ISBN 9783642177101
3642177107
ISSN 0302-9743
IngestDate Wed Sep 17 03:11:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1130-21d015151dcf1c8fe2725702d05173cbd9460b025b3ede3e2238048762d78a2f3
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_642_17711_8_30
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle ICPR 2010 Contests, Istanbul, Turkey, August 23-26, 2010, Contest Reports
PublicationTitle Recognizing Patterns in Signals, Speech, Images and Videos
PublicationYear 2010
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000476620
ssj0002792
Score 1.4232749
Snippet A novel framework for action recognition in video using empirical covariance matrices of bags of low-dimensional feature vectors is developed. The feature...
SourceID springer
SourceType Publisher
StartPage 294
SubjectTerms action recognition
covariance manifold
silhouette tunnel
sparse linear representation
video analysis
Title Action Recognition in Video by Sparse Representation on Covariance Manifolds of Silhouette Tunnels
URI http://link.springer.com/10.1007/978-3-642-17711-8_30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW2ywV6aCkgSinygdsqKHGy-ThwqKpCKW1VsduqtyiOHRpRklWzAbG_iJ_JjB0nLq2QirSKVtEqdsZv7fH4zRtC3k7zqWRZhODlzAlyVzgJy5kDgx0LhlEHDxOcT07Dw_Pg6HJ6ORr9tlhL7ZK_y1f35pX8z6jCPRhXzJJ9wMj2D4Ub8B3GF64wwnD9y_m9HWbtJGIV9WeFe_0zpZKpOeGz8itqIquw5kJKXerp0_cMxRwwSn5RCln3nvTHttakinIAydVPzbo-u8m-ZU0fL_6MlQiEptZWbbOy0banK45_MXQkTaBUTaGDO1vA_hkrRCyGbKcKzyn26x-wWVdpCydZVRb1tVDckll5fVW3SEOazFuk4ugOo1Vl8_64O_g4rZeKTzYxtSnMVGXHMhQlzo5lmFjm5B9SXyrtBBAUgWvkWZOlDzM77I30ZCn1ZB6iRKOvJVHNBK1LKndrva9Svu8uIzZzBBpzsDXPiVPfXSNr0IExebR3cHR80Ufz3CAKQ3S8Ox8AZRn1-ZXuFWYVmV5HWvdpeAsro_O-Ju-c0SvXZ75J1jEdhmKeChj4KRnJaotsGIPTzuBb5ImlbPmMcA0IagGClhVVgKD8F9WAoLcBQeEzAIL2gKB1QQdA0A4Qz8n5h4P5_qHTlfNwGg88JYd5wkX32RN54eVxIVmEJRSZQJk4P-ciCUKXgw_OfSmkL8FxjWF9gdVaRHHGCv8FGVd1JV8SGsLGIU54kmQonyVFLINpEcSwnAgBj8y2ycSYLMU_aJMadW4wcOqnYOBUGThFA7960K93yOMBuq_JeHnTyl1wTJf8TYeKPwIkhSM
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recognizing+Patterns+in+Signals%2C+Speech%2C+Images+and+Videos&rft.au=Guo%2C+Kai&rft.au=Ishwar%2C+Prakash&rft.au=Konrad%2C+Janusz&rft.atitle=Action+Recognition+in+Video+by+Sparse+Representation+on+Covariance+Manifolds+of+Silhouette+Tunnels&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2010-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642177101&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=294&rft.epage=305&rft_id=info:doi/10.1007%2F978-3-642-17711-8_30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon