Comparison of EM-Based Algorithms and Image Segmentation Evaluation
Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The idea behind the EM algorithm is intuitive and natural, which makes it applicable to a variety of p...
Saved in:
| Published in | Intelligent Computing Methodologies pp. 76 - 86 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Cham
Springer International Publishing
2014
|
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319093383 331909338X |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-09339-0_8 |
Cover
| Abstract | Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The idea behind the EM algorithm is intuitive and natural, which makes it applicable to a variety of problems. However, the EM algorithm does not guarantee convergence to the global maximum when there are multiple local maxima. In this paper, a random swap EM (RSEM) algorithm is introduced and compared to other variants of the EM algorithms. The variants are then applied to color image segmentation. In addition, a cluster validity criterion is proposed for evaluating the segmentation results from the EM variants. The purpose of this paper is to compare the characteristics of the variants with split and merge strategies and stochastic ways and their performance in color image segmentation. The experimental results indicate that the introduced RSEM performs better with simpler implementation than the other variants. |
|---|---|
| AbstractList | Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The idea behind the EM algorithm is intuitive and natural, which makes it applicable to a variety of problems. However, the EM algorithm does not guarantee convergence to the global maximum when there are multiple local maxima. In this paper, a random swap EM (RSEM) algorithm is introduced and compared to other variants of the EM algorithms. The variants are then applied to color image segmentation. In addition, a cluster validity criterion is proposed for evaluating the segmentation results from the EM variants. The purpose of this paper is to compare the characteristics of the variants with split and merge strategies and stochastic ways and their performance in color image segmentation. The experimental results indicate that the introduced RSEM performs better with simpler implementation than the other variants. |
| Author | Zhao, Qinpei Li, Hongyu Niu, Mei |
| Author_xml | – sequence: 1 givenname: Mei surname: Niu fullname: Niu, Mei email: sunnyniu1093@gmail.com organization: School of Software Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Qinpei surname: Zhao fullname: Zhao, Qinpei email: qinpeizhao@gmail.com organization: School of Software Engineering, Tongji University, Shanghai, China – sequence: 3 givenname: Hongyu surname: Li fullname: Li, Hongyu email: hongyuli.tj@gmail.com organization: School of Software Engineering, Tongji University, Shanghai, China |
| BookMark | eNpVkE1OwzAQhQ0UiVJ6Aja5gGHGdvyzLFELlYpYAGvLqZ0QaOIqLpwfU9iwmRl9M3p68y7JZIhDIOQa4QYB1K1RmnLK0VAwnOdq9QmZZ8ozOyI4JVOUiJRzYc7-7TSfkClwYNQowS_IPKV3AEBmFAo9JVUV-70buxSHIjbF8pHeuRR8sdi1cewOb30q3OCLde_aUDyHtg_DwR26fL38crvP43hFzhu3S2H-12fkdbV8qR7o5ul-XS02NCEyTTVsayUbWUrhwDQMmBCl9A69yoa3WkhvahQBSi99YI0yRknmEFzQUArkM4K_umk_dkMbRlvH-JEsgv0JymYVy21-3B5TsTko_g3BN1Zs |
| ContentType | Book Chapter |
| Copyright | Springer International Publishing Switzerland 2014 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2014 |
| DOI | 10.1007/978-3-319-09339-0_8 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 9783319093390 3319093398 |
| EISSN | 1611-3349 |
| Editor | Jo, Kang-Hyun Huang, De-Shuang Wang, Ling |
| Editor_xml | – sequence: 1 givenname: De-Shuang surname: Huang fullname: Huang, De-Shuang email: dshuang@tongji.edu.cn – sequence: 2 givenname: Kang-Hyun surname: Jo fullname: Jo, Kang-Hyun email: jokanghyun@gmail.com – sequence: 3 givenname: Ling surname: Wang fullname: Wang, Ling email: wangling@tsinghua.edu.cn |
| EndPage | 86 |
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
| ID | FETCH-LOGICAL-s1128-80cb76f6564a09f2024456da1d7978c846d9b14e05d6de2f799762a10ae805413 |
| ISBN | 9783319093383 331909338X |
| ISSN | 0302-9743 |
| IngestDate | Wed Sep 17 03:30:26 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1128-80cb76f6564a09f2024456da1d7978c846d9b14e05d6de2f799762a10ae805413 |
| PageCount | 11 |
| ParticipantIDs | springer_books_10_1007_978_3_319_09339_0_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2014 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – year: 2014 text: 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSubtitle | 10th International Conference, ICIC 2014, Taiyuan, China, August 3-6, 2014. Proceedings |
| PublicationTitle | Intelligent Computing Methodologies |
| PublicationYear | 2014 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Steffen, Bernhard Kittler, Josef Weikum, Gerhard Naor, Moni Mitchell, John C. Terzopoulos, Demetri Kobsa, Alfred Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Alfred surname: Kobsa fullname: Kobsa, Alfred organization: University of California, Irvine, USA – sequence: 6 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 7 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 8 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 9 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Bern, Switzerland – sequence: 10 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 11 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: TU Dortmund University, Dortmund, Germany – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 14 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany |
| SSID | ssj0001297148 ssj0002792 |
| Score | 1.4344354 |
| Snippet | Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model... |
| SourceID | springer |
| SourceType | Publisher |
| StartPage | 76 |
| SubjectTerms | clustering color image segmentation EM algorithm evaluation |
| Title | Comparison of EM-Based Algorithms and Image Segmentation Evaluation |
| URI | http://link.springer.com/10.1007/978-3-319-09339-0_8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXYcgEOwALiWz5wIgrKh5s0Bw5LVbSs2kqIXbS3KP5IqUQTtE0P8Ot5tuM6W_ayXKLKautkXjx-HnveEPJOVjIWleAhjwQLmWBxyKsxC2WNlVhaYUYXOt95scxOL9jZ5fjS7-Cb7JKOfxB_bswr-R9U0QZcdZbsLZDd_yka8Bn44gqEcT0gv9fDrPvjglZMswtsbQa96l-YitDGo_nTgcv1zgQ-1XoQJzYx0q_r5pdvndsS1m2z-r0bvkvTYbHCYLYIP2Huk8HJz1V7te5-bKzO85eNPv_zTa02fT5TE8z2WuLWe2lV5e3Heb9vsWw7cxwscKUlnKcZhiJidhCKcKHIg2Cmj6ddW7umGPw6nGLr2LgcLvhnrHBsk7IuOdNCi6kVNu3dbJ4NJ-zsxqlgePrDZGqhL1zLyRE5Qu8jcvdkdjb_PgzI5WZt2E_jWlnRbkHZW9KJQe6We-km_wh7PSsrWXzQ4z-77Ia8nD8iD3RCC9WZJjDYY3JHNcfkobM57W1-TO4PtCmfkKkHnbY1daBTDzoF6NSAToegUw_6U3LxeXY-PQ37ihvhFrx7AroieJ7V4Pisioo6AYEDwZZVLHM8lgBXlQWPmYrGMpMqqfMCbDbBiK7UBNw_Tp-RUdM26jmhCU8yUUjwvzRijBeVApWuiiQq8GuV8hfkvbNJqcfQtnQC2uipTEsYsDQGLGHAl7f58ityz7-cr8mou9qpN2COHX_bY_4XfFxlFw |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Intelligent+Computing+Methodologies&rft.au=Niu%2C+Mei&rft.au=Zhao%2C+Qinpei&rft.au=Li%2C+Hongyu&rft.atitle=Comparison+of+EM-Based+Algorithms+and+Image+Segmentation+Evaluation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2014-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319093383&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=76&rft.epage=86&rft_id=info:doi/10.1007%2F978-3-319-09339-0_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |