Comparison of EM-Based Algorithms and Image Segmentation Evaluation

Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The idea behind the EM algorithm is intuitive and natural, which makes it applicable to a variety of p...

Full description

Saved in:
Bibliographic Details
Published inIntelligent Computing Methodologies pp. 76 - 86
Main Authors Niu, Mei, Zhao, Qinpei, Li, Hongyu
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2014
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319093383
331909338X
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-09339-0_8

Cover

Abstract Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The idea behind the EM algorithm is intuitive and natural, which makes it applicable to a variety of problems. However, the EM algorithm does not guarantee convergence to the global maximum when there are multiple local maxima. In this paper, a random swap EM (RSEM) algorithm is introduced and compared to other variants of the EM algorithms. The variants are then applied to color image segmentation. In addition, a cluster validity criterion is proposed for evaluating the segmentation results from the EM variants. The purpose of this paper is to compare the characteristics of the variants with split and merge strategies and stochastic ways and their performance in color image segmentation. The experimental results indicate that the introduced RSEM performs better with simpler implementation than the other variants.
AbstractList Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The idea behind the EM algorithm is intuitive and natural, which makes it applicable to a variety of problems. However, the EM algorithm does not guarantee convergence to the global maximum when there are multiple local maxima. In this paper, a random swap EM (RSEM) algorithm is introduced and compared to other variants of the EM algorithms. The variants are then applied to color image segmentation. In addition, a cluster validity criterion is proposed for evaluating the segmentation results from the EM variants. The purpose of this paper is to compare the characteristics of the variants with split and merge strategies and stochastic ways and their performance in color image segmentation. The experimental results indicate that the introduced RSEM performs better with simpler implementation than the other variants.
Author Zhao, Qinpei
Li, Hongyu
Niu, Mei
Author_xml – sequence: 1
  givenname: Mei
  surname: Niu
  fullname: Niu, Mei
  email: sunnyniu1093@gmail.com
  organization: School of Software Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Qinpei
  surname: Zhao
  fullname: Zhao, Qinpei
  email: qinpeizhao@gmail.com
  organization: School of Software Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Hongyu
  surname: Li
  fullname: Li, Hongyu
  email: hongyuli.tj@gmail.com
  organization: School of Software Engineering, Tongji University, Shanghai, China
BookMark eNpVkE1OwzAQhQ0UiVJ6Aja5gGHGdvyzLFELlYpYAGvLqZ0QaOIqLpwfU9iwmRl9M3p68y7JZIhDIOQa4QYB1K1RmnLK0VAwnOdq9QmZZ8ozOyI4JVOUiJRzYc7-7TSfkClwYNQowS_IPKV3AEBmFAo9JVUV-70buxSHIjbF8pHeuRR8sdi1cewOb30q3OCLde_aUDyHtg_DwR26fL38crvP43hFzhu3S2H-12fkdbV8qR7o5ul-XS02NCEyTTVsayUbWUrhwDQMmBCl9A69yoa3WkhvahQBSi99YI0yRknmEFzQUArkM4K_umk_dkMbRlvH-JEsgv0JymYVy21-3B5TsTko_g3BN1Zs
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2014
Copyright_xml – notice: Springer International Publishing Switzerland 2014
DOI 10.1007/978-3-319-09339-0_8
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783319093390
3319093398
EISSN 1611-3349
Editor Jo, Kang-Hyun
Huang, De-Shuang
Wang, Ling
Editor_xml – sequence: 1
  givenname: De-Shuang
  surname: Huang
  fullname: Huang, De-Shuang
  email: dshuang@tongji.edu.cn
– sequence: 2
  givenname: Kang-Hyun
  surname: Jo
  fullname: Jo, Kang-Hyun
  email: jokanghyun@gmail.com
– sequence: 3
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
  email: wangling@tsinghua.edu.cn
EndPage 86
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1128-80cb76f6564a09f2024456da1d7978c846d9b14e05d6de2f799762a10ae805413
ISBN 9783319093383
331909338X
ISSN 0302-9743
IngestDate Wed Sep 17 03:30:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1128-80cb76f6564a09f2024456da1d7978c846d9b14e05d6de2f799762a10ae805413
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_319_09339_0_8
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 10th International Conference, ICIC 2014, Taiyuan, China, August 3-6, 2014. Proceedings
PublicationTitle Intelligent Computing Methodologies
PublicationYear 2014
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Weikum, Gerhard
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Kobsa, Alfred
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Alfred
  surname: Kobsa
  fullname: Kobsa, Alfred
  organization: University of California, Irvine, USA
– sequence: 6
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 7
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 8
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 9
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 10
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 11
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0001297148
ssj0002792
Score 1.4344354
Snippet Expectation-Maximization (EM) algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model...
SourceID springer
SourceType Publisher
StartPage 76
SubjectTerms clustering
color image segmentation
EM algorithm
evaluation
Title Comparison of EM-Based Algorithms and Image Segmentation Evaluation
URI http://link.springer.com/10.1007/978-3-319-09339-0_8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXYcgEOwALiWz5wIgrKh5s0Bw5LVbSs2kqIXbS3KP5IqUQTtE0P8Ot5tuM6W_ayXKLKautkXjx-HnveEPJOVjIWleAhjwQLmWBxyKsxC2WNlVhaYUYXOt95scxOL9jZ5fjS7-Cb7JKOfxB_bswr-R9U0QZcdZbsLZDd_yka8Bn44gqEcT0gv9fDrPvjglZMswtsbQa96l-YitDGo_nTgcv1zgQ-1XoQJzYx0q_r5pdvndsS1m2z-r0bvkvTYbHCYLYIP2Huk8HJz1V7te5-bKzO85eNPv_zTa02fT5TE8z2WuLWe2lV5e3Heb9vsWw7cxwscKUlnKcZhiJidhCKcKHIg2Cmj6ddW7umGPw6nGLr2LgcLvhnrHBsk7IuOdNCi6kVNu3dbJ4NJ-zsxqlgePrDZGqhL1zLyRE5Qu8jcvdkdjb_PgzI5WZt2E_jWlnRbkHZW9KJQe6We-km_wh7PSsrWXzQ4z-77Ia8nD8iD3RCC9WZJjDYY3JHNcfkobM57W1-TO4PtCmfkKkHnbY1daBTDzoF6NSAToegUw_6U3LxeXY-PQ37ihvhFrx7AroieJ7V4Pisioo6AYEDwZZVLHM8lgBXlQWPmYrGMpMqqfMCbDbBiK7UBNw_Tp-RUdM26jmhCU8yUUjwvzRijBeVApWuiiQq8GuV8hfkvbNJqcfQtnQC2uipTEsYsDQGLGHAl7f58ityz7-cr8mou9qpN2COHX_bY_4XfFxlFw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Intelligent+Computing+Methodologies&rft.au=Niu%2C+Mei&rft.au=Zhao%2C+Qinpei&rft.au=Li%2C+Hongyu&rft.atitle=Comparison+of+EM-Based+Algorithms+and+Image+Segmentation+Evaluation&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2014-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319093383&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=76&rft.epage=86&rft_id=info:doi/10.1007%2F978-3-319-09339-0_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon