Feature-Based Dissimilarity Space Classification

General dissimilarity-based learning approaches have been proposed for dissimilarity data sets [1,2]. They often arise in problems in which direct comparisons of objects are made by computing pairwise distances between images, spectra, graphs or strings. Dissimilarity-based classifiers can also be d...

Full description

Saved in:
Bibliographic Details
Published inRecognizing Patterns in Signals, Speech, Images and Videos pp. 46 - 55
Main Authors Duin, Robert P. W., Loog, Marco, Pȩkalska, Elżbieta, Tax, David M. J.
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2010
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783642177101
3642177107
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-17711-8_5

Cover

More Information
Summary:General dissimilarity-based learning approaches have been proposed for dissimilarity data sets [1,2]. They often arise in problems in which direct comparisons of objects are made by computing pairwise distances between images, spectra, graphs or strings. Dissimilarity-based classifiers can also be defined in vector spaces [3]. A large comparative study has not been undertaken so far. This paper compares dissimilarity-based classifiers with traditional feature-based classifiers, including linear and nonlinear SVMs, in the context of the ICPR 2010 Classifier Domains of Competence contest. It is concluded that the feature-based dissimilarity space classification performs similar or better than the linear and nonlinear SVMs, as averaged over all 301 datasets of the contest and in a large subset of its datasets. This indicates that these classifiers have their own domain of competence.
ISBN:9783642177101
3642177107
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-17711-8_5