Feature-Based Dissimilarity Space Classification

General dissimilarity-based learning approaches have been proposed for dissimilarity data sets [1,2]. They often arise in problems in which direct comparisons of objects are made by computing pairwise distances between images, spectra, graphs or strings. Dissimilarity-based classifiers can also be d...

Full description

Saved in:
Bibliographic Details
Published inRecognizing Patterns in Signals, Speech, Images and Videos pp. 46 - 55
Main Authors Duin, Robert P. W., Loog, Marco, Pȩkalska, Elżbieta, Tax, David M. J.
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2010
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783642177101
3642177107
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-17711-8_5

Cover

Abstract General dissimilarity-based learning approaches have been proposed for dissimilarity data sets [1,2]. They often arise in problems in which direct comparisons of objects are made by computing pairwise distances between images, spectra, graphs or strings. Dissimilarity-based classifiers can also be defined in vector spaces [3]. A large comparative study has not been undertaken so far. This paper compares dissimilarity-based classifiers with traditional feature-based classifiers, including linear and nonlinear SVMs, in the context of the ICPR 2010 Classifier Domains of Competence contest. It is concluded that the feature-based dissimilarity space classification performs similar or better than the linear and nonlinear SVMs, as averaged over all 301 datasets of the contest and in a large subset of its datasets. This indicates that these classifiers have their own domain of competence.
AbstractList General dissimilarity-based learning approaches have been proposed for dissimilarity data sets [1,2]. They often arise in problems in which direct comparisons of objects are made by computing pairwise distances between images, spectra, graphs or strings. Dissimilarity-based classifiers can also be defined in vector spaces [3]. A large comparative study has not been undertaken so far. This paper compares dissimilarity-based classifiers with traditional feature-based classifiers, including linear and nonlinear SVMs, in the context of the ICPR 2010 Classifier Domains of Competence contest. It is concluded that the feature-based dissimilarity space classification performs similar or better than the linear and nonlinear SVMs, as averaged over all 301 datasets of the contest and in a large subset of its datasets. This indicates that these classifiers have their own domain of competence.
Author Loog, Marco
Pȩkalska, Elżbieta
Duin, Robert P. W.
Tax, David M. J.
Author_xml – sequence: 1
  givenname: Robert P. W.
  surname: Duin
  fullname: Duin, Robert P. W.
  email: r.duin@ieee.org
  organization: Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, The Netherlands
– sequence: 2
  givenname: Marco
  surname: Loog
  fullname: Loog, Marco
  email: m.loog@tudelft.nl
  organization: Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, The Netherlands
– sequence: 3
  givenname: Elżbieta
  surname: Pȩkalska
  fullname: Pȩkalska, Elżbieta
  email: pekalska@cs.man.ac.uk
  organization: School of Computer Science, University of Manchester, United Kingdom
– sequence: 4
  givenname: David M. J.
  surname: Tax
  fullname: Tax, David M. J.
  email: d.m.j.tax@tudelft.org
  organization: Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, The Netherlands
BookMark eNo1kMFOwzAMhgMMiW70CbjsBQJ2nDbNEQoDpEkcgHOUpikKlHZqyoG3Jxvgi-XflvX9_5IthnHwjF0gXCKAutKq4sRLKTgqhcgrUxyxJSXhMBfHLMMy6URSn7A8nf_vABcsAwLBtZJ0xvIY3yGVVGUpIGOw8Xb-mjy_sdG369sQY_gMvZ3C_L1-3lnn13Vvk9gFZ-cwDufstLN99PlfX7HXzd1L_cC3T_eP9fWWR0RRcKdRyE77RkHrWqEKwMpjopJVSxqlaMC7Zg9SlNp2ItE43UlF4CuhSNGK4e_fuJvC8OYn04zjRzQIZh-JSR4NmeTSHCIwKRL6AdljTuI
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2010
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2010
DOI 10.1007/978-3-642-17711-8_5
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3642177115
9783642177118
EISSN 1611-3349
Editor Ünay, Devrim
Çataltepe, Zehra
Aksoy, Selim
Editor_xml – sequence: 1
  givenname: Devrim
  surname: Ünay
  fullname: Ünay, Devrim
  email: devrim.unay@bahcesehir.edu.tr
– sequence: 2
  givenname: Zehra
  surname: Çataltepe
  fullname: Çataltepe, Zehra
  email: cataltepe@itu.edu.tr
– sequence: 3
  givenname: Selim
  surname: Aksoy
  fullname: Aksoy, Selim
  email: saksoy@cs.bilkent.edu.tr
EndPage 55
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1125-c9124f9eb70dcd275018e136448d39142b0ecb0004569af2662c9f4730e827373
ISBN 9783642177101
3642177107
ISSN 0302-9743
IngestDate Wed Sep 17 03:11:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1125-c9124f9eb70dcd275018e136448d39142b0ecb0004569af2662c9f4730e827373
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_642_17711_8_5
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle ICPR 2010 Contests, Istanbul, Turkey, August 23-26, 2010, Contest Reports
PublicationTitle Recognizing Patterns in Signals, Speech, Images and Videos
PublicationYear 2010
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000476620
ssj0002792
Score 1.4609956
Snippet General dissimilarity-based learning approaches have been proposed for dissimilarity data sets [1,2]. They often arise in problems in which direct comparisons...
SourceID springer
SourceType Publisher
StartPage 46
SubjectTerms Dissimilarity Measure
Feature Space
Linear Support Vector Machine
Neighbor Rule
Training Object
Title Feature-Based Dissimilarity Space Classification
URI http://link.springer.com/10.1007/978-3-642-17711-8_5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6F9NJyoKWtWvqQD82lli1vvLbjQw9gUdEIEBKBcrNs7wRZiBgRR0L8nP5SZnbXj0BViV6syLIyzsxm9pvZmW8Y-yZpcgAIcPyJ9BwB6AczTieFBDaygEsIqBv56Dg8OBPTi-BiMPjTq1pa1blb3P-1r-R_rIr30K7UJfsMy7ZfijfwM9oXr2hhvD4Cv-tpVkMRq0p_7inWP1Esmbom_LS8JE5klda8AdCjnn5dZ0TmQFny81JC1Y2TX2kSAV1hbZ-49m-3LdKpqkvTz1NUnQ8dJcloN7pCGVeZrgwbJcFoL8lLqFsnP8vu2pJ5-8i1p25_cRLwXN2Cs4d7qCQG0GV5XWKMTSHBKUbxoId1UhlTt3JIpbD8cWhOPY6rWhWT2c1gisZP9RMZqh6un8hoEpn2P3i-VM-JwCgKcRHveUof3ToGRtpTgvbkIfEz-poP1Xhnk-zU-7xmB36yg_SLRlCUQ7K4M0mDDbaB0ofsxe7-9PC8zeN5IgpDgtxm9ydCRn1ypV-J-omaV44041P3E1oaLM10_Ejik8N5hXlmr9km9cFY1KCCyn3DBrDYZluNsi2j7G32qkdp-ZZ5a6a11kxrKdNa66Z9x85-7s-SA8dM5XCWiM0Dp4gREs5jyCNPFpLGA_AJcJ_ifOnHXIxzDwoTK8TZHAHguIjnAncSmCBWjvz3bLioFvCBWYDPCkG92iIU0uN5FkGYB8DHeSgRNn1k3xsFpPQ_W6YNyTZqK_VT1FaqtJWitnae8_An9rJbgp_ZsL5dwRdEl3X-1Rj4ATF1azw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recognizing+Patterns+in+Signals%2C+Speech%2C+Images+and+Videos&rft.au=Duin%2C+Robert+P.+W.&rft.au=Loog%2C+Marco&rft.au=Pe%CC%A7kalska%2C+El%C5%BCbieta&rft.au=Tax%2C+David+M.+J.&rft.atitle=Feature-Based+Dissimilarity+Space+Classification&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2010-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642177101&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=46&rft.epage=55&rft_id=info:doi/10.1007%2F978-3-642-17711-8_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon