Arabic Sign Language Recognition Using Spatio-Temporal Local Binary Patterns and Support Vector Machine

One of the most common ways of communication in deaf community is sign language recognition. This paper focuses on the problem of recognizing Arabic sign language at word level used by the community of deaf people. The proposed system is based on the combination of Spatio-Temporal local binary patte...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Machine Learning Technologies and Applications pp. 36 - 45
Main Authors Aly, Saleh, Mohammed, Safaa
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2014
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN3319134604
9783319134604
ISSN1865-0929
1865-0937
DOI10.1007/978-3-319-13461-1_5

Cover

Abstract One of the most common ways of communication in deaf community is sign language recognition. This paper focuses on the problem of recognizing Arabic sign language at word level used by the community of deaf people. The proposed system is based on the combination of Spatio-Temporal local binary pattern (STLBP) feature extraction technique and support vector machine (SVM) classifier. The system takes a sequence of sign images or a video stream as input, and localize head and hands using IHLS color space and random forest classifier. A feature vector is extracted from the segmented images using local binary pattern on three orthogonal planes (LBP-TOP) algorithm which jointly extracts the appearance and motion features of gestures. The obtained feature vector is classified using support vector machine classifier. The proposed method does not require that signers wear gloves or any other marker devices. Experimental results using Arabic sign language (ArSL) database contains 23 signs (words) recorded by 3 signers show the effectiveness of the proposed method. For signer dependent test, the proposed system based on LBP-TOP and SVM achieves an overall recognition rate reaching up to 99.5%.
AbstractList One of the most common ways of communication in deaf community is sign language recognition. This paper focuses on the problem of recognizing Arabic sign language at word level used by the community of deaf people. The proposed system is based on the combination of Spatio-Temporal local binary pattern (STLBP) feature extraction technique and support vector machine (SVM) classifier. The system takes a sequence of sign images or a video stream as input, and localize head and hands using IHLS color space and random forest classifier. A feature vector is extracted from the segmented images using local binary pattern on three orthogonal planes (LBP-TOP) algorithm which jointly extracts the appearance and motion features of gestures. The obtained feature vector is classified using support vector machine classifier. The proposed method does not require that signers wear gloves or any other marker devices. Experimental results using Arabic sign language (ArSL) database contains 23 signs (words) recorded by 3 signers show the effectiveness of the proposed method. For signer dependent test, the proposed system based on LBP-TOP and SVM achieves an overall recognition rate reaching up to 99.5%.
Author Aly, Saleh
Mohammed, Safaa
Author_xml – sequence: 1
  givenname: Saleh
  surname: Aly
  fullname: Aly, Saleh
  email: saleh@aswu.edu.eg
  organization: Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, Egypt
– sequence: 2
  givenname: Safaa
  surname: Mohammed
  fullname: Mohammed, Safaa
  email: safaa.elsoghier@gmail.com
  organization: Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, Egypt
BookMark eNpFkE1OwzAQhQ0Uibb0BGx8AYMnjp14WRB_UhCItmwtx3GCodhRnC64PaYgmMWM3rzR0-iboYkP3iJ0BvQcKC0uZFESRhhIAiwXQEDxAzRjabHX2SGaQik4oZIVR_8GzSd_RiZP0CLGN5qKl7SUfIq65aBrZ_DKdR5X2nc73Vn8bE3ovBtd8HgTne_wqtdJkbX96MOgt7gKJvVL5_XwiZ_0ONrBR6x9g1e7Pp2M-MWaMQz4QZtX5-0pOm71NtrF75yjzc31-uqOVI-391fLikSAjBNdtEXDaMtEY2nOhW1Mk3EqBfBSyBpoXlgDFGpTtlRIKXNRQ5ZbSH6hBWNzBD-5sR_S33ZQdQjvUQFV3xhVwqiYSnDUHptKGNkXYqViVQ
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2014
Copyright_xml – notice: Springer International Publishing Switzerland 2014
DOI 10.1007/978-3-319-13461-1_5
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3319134612
9783319134611
EISSN 1865-0937
Editor Tolba, Mohamed F.
Taher Azar, Ahmad
Hassanien, Aboul Ella
Editor_xml – sequence: 1
  givenname: Aboul Ella
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  email: aboitcairo@gmail.com
– sequence: 2
  givenname: Mohamed F.
  surname: Tolba
  fullname: Tolba, Mohamed F.
  email: tolba@asunet.shams.eun.eg
– sequence: 3
  givenname: Ahmad
  surname: Taher Azar
  fullname: Taher Azar, Ahmad
  email: ahmad_t_azar@ieee.org
EndPage 45
GroupedDBID 0D6
0DA
38.
9-X
A0U
A3-
AABBV
AAPCR
ABBVZ
ABFTD
ABMNI
ACKEY
ACTXJ
AEHWL
AEJLV
AEKFX
AETDV
AEZAY
AHJUR
ALMA_UNASSIGNED_HOLDINGS
ANZUN
AZZ
BBABE
BZAQK
CZZ
I4C
IEZ
SBO
SNUHX
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-s1125-a7f7d30f36de0456edcd2509615869b1047ec101bc8f0699946b124e11587a633
ISBN 3319134604
9783319134604
ISSN 1865-0929
IngestDate Tue Jul 29 19:51:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1125-a7f7d30f36de0456edcd2509615869b1047ec101bc8f0699946b124e11587a633
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_319_13461_1_5
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSubtitle Second International Conference, AMLTA 2014, Cairo, Egypt, November 28-30, 2014. Proceedings
PublicationTitle Advanced Machine Learning Technologies and Applications
PublicationYear 2014
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Du, Xiaoyong
Yang, Xiaokang
Filipe, Joaquim
Chen, Phoebe
Ślęzak, Dominik
Junqueira Barbosa, Simone Diniz
Sivalingam, Krishna M.
Kotenko, Igor
Washio, Takashi
Cuzzocrea, Alfredo
Kara, Orhun
RelatedPersons_xml – sequence: 1
  givenname: Simone Diniz
  surname: Junqueira Barbosa
  fullname: Junqueira Barbosa, Simone Diniz
  organization: Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
– sequence: 2
  givenname: Phoebe
  surname: Chen
  fullname: Chen, Phoebe
  organization: La Trobe University, Melbourne, Australia
– sequence: 3
  givenname: Alfredo
  surname: Cuzzocrea
  fullname: Cuzzocrea, Alfredo
  organization: University of Calabria, Cosenza, Italy
– sequence: 4
  givenname: Xiaoyong
  surname: Du
  fullname: Du, Xiaoyong
  organization: Renmin University of China, Beijing, China
– sequence: 5
  givenname: Joaquim
  surname: Filipe
  fullname: Filipe, Joaquim
  organization: Polytechnic Institute of Setúbal, Setúbal, Portugal
– sequence: 6
  givenname: Orhun
  surname: Kara
  fullname: Kara, Orhun
  organization: Middle East Technical University, Ankara, Turkey
– sequence: 7
  givenname: Igor
  surname: Kotenko
  fullname: Kotenko, Igor
  organization: St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, St. Petersburg, Russia
– sequence: 8
  givenname: Krishna M.
  surname: Sivalingam
  fullname: Sivalingam, Krishna M.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Dominik
  surname: Ślęzak
  fullname: Ślęzak, Dominik
  organization: University of Warsaw, Warsaw, Poland
– sequence: 10
  givenname: Takashi
  surname: Washio
  fullname: Washio, Takashi
  organization: Osaka University, Osaka, Japan
– sequence: 11
  givenname: Xiaokang
  surname: Yang
  fullname: Yang, Xiaokang
  organization: Shanghai Jiao Tong University, Shanghai, China
SSID ssj0000580895
ssj0001386043
ssib054953581
Score 1.4985083
Snippet One of the most common ways of communication in deaf community is sign language recognition. This paper focuses on the problem of recognizing Arabic sign...
SourceID springer
SourceType Publisher
StartPage 36
SubjectTerms Discrete Cosine Transform
Local Binary Pattern
Recognition Rate
Sign Language
Support Vector Machine
Title Arabic Sign Language Recognition Using Spatio-Temporal Local Binary Patterns and Support Vector Machine
URI http://link.springer.com/10.1007/978-3-319-13461-1_5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZK97Jw2F0egn3JB05UXjU4cdJjQawQaldILYhb5CQOD6FWouXC_-F_7ozHTt2wF_YStVbUOJ6v4_Hnmc-MHZqs0kmdpiLWtRLgJUuBIt8CAC0jXccQFCAPOf6jzq_ii5vkptN5DbKWnpfFr_Lln3Ul_2NVaAO7YpXsOyzb_Cg0wGewL1zBwnBtBb_rNCulF_vd-7HNhzReKvV2RZfDKthuDgyDXerGwnTE9AQmiIYRHs_vkMh2VHGtdQio4ZMu7sveBA_yHDmWE6NOyj8CEFH2wcSmaIspSV499kY4WfZOqOz30qp5zqhXeKAoBP-9a7tx4F-D3BzKLy_Wq1cWVKBIh1C4NOam9NL7qJDEiOIWieFJzBYNumLi1la9EtxGJGNF5xY7x52pRPQHjj0xYRuJyjgHLVUw1ZOQ5ZtJJMwbwRovfFYkojzZYBvw9C77MDy7GF17t5Vgiq5XkSNJ-ayfuXLnB9oLhr7aUg_fS6wyat6CdKBW3xtxLNI_bnXizZa9jYSmn9kWVsdwLFuBMfzCOma2zT55s3Bnhm22GQhd7rBbAg9H8HAPHh6Ah1vw8BZ4uAUPJ_BwDx4OtucOPJzAwx14dtnV77Pp6blwR3yIBQT6idBpnVayX0tVGVxcmKqsjlGRKEoyNShQR8SUMGsUZVb3FSxmYlVARGpgHZOlWkm5x7qz-czsM15FJsG6clUAvlJlinigtYIYsE4hBD5WB-zIj1uOf9pF7hW7YZBzmcMg53aQcxjkr--5-Rv7uML0d9ZdPj2bHxCqLoufDip_AYAai7w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Machine+Learning+Technologies+and+Applications&rft.au=Aly%2C+Saleh&rft.au=Mohammed%2C+Safaa&rft.atitle=Arabic+Sign+Language+Recognition+Using+Spatio-Temporal+Local+Binary+Patterns+and+Support+Vector+Machine&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2014-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319134604&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=36&rft.epage=45&rft_id=info:doi/10.1007%2F978-3-319-13461-1_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0929&client=summon