高水头弧形闸门出口侧墙空化特性及掺气减蚀研究

TV131.3; 高水头泄洪放空洞弧形闸门出口往往需要设置掺气设施以减免高速水流空化空蚀破坏.由于有压出口区域水流流态与结构壁面相互作用复杂,易导致掺气减蚀保护失效,目前,其核心水力致灾原因尚不明确,并且制约着适用于弧形闸门掺气减蚀的技术研发.本文结合实际工程中高水头弧形闸门出口侧墙空蚀破坏实例,采用水力学模型试验与数值模拟方法,对空蚀破坏的水力学成因进行系统分析,并提出了掺气减蚀水力设计方案.结果表明,弧形闸门泄流运行时,高速水流横向扩散显著,侧空腔掺气效果较差,在侧向附壁过程中形成侧墙冲击-低压反射区,导致附壁区水流空化数较低,并存在侧墙清水区域,二者共同作用导致泄洪放空洞侧墙发生空化空蚀...

Full description

Saved in:
Bibliographic Details
Published in工程科学与技术 Vol. 57; no. 2; pp. 84 - 92
Main Authors 王伟, 邓军, 卫望汝
Format Journal Article
LanguageChinese
Published 四川水利职业技术学院,四川 成都 611830%四川大学 山区河流保护与治理全国重点实验室,四川 成都 610065 01.03.2025
Subjects
Online AccessGet full text
ISSN2096-3246
DOI10.15961/j.jsuese.202300347

Cover

Abstract TV131.3; 高水头泄洪放空洞弧形闸门出口往往需要设置掺气设施以减免高速水流空化空蚀破坏.由于有压出口区域水流流态与结构壁面相互作用复杂,易导致掺气减蚀保护失效,目前,其核心水力致灾原因尚不明确,并且制约着适用于弧形闸门掺气减蚀的技术研发.本文结合实际工程中高水头弧形闸门出口侧墙空蚀破坏实例,采用水力学模型试验与数值模拟方法,对空蚀破坏的水力学成因进行系统分析,并提出了掺气减蚀水力设计方案.结果表明,弧形闸门泄流运行时,高速水流横向扩散显著,侧空腔掺气效果较差,在侧向附壁过程中形成侧墙冲击-低压反射区,导致附壁区水流空化数较低,并存在侧墙清水区域,二者共同作用导致泄洪放空洞侧墙发生空化空蚀破坏,这种不利影响在大流量、闸门局开条件下更为严重.基于提高侧墙水流空化数与改善侧掺气空腔掺气效果,提出了侧墙二级收缩掺气坎,实现低压空蚀风险区域水流脱壁,末端侧向水流附壁全断面掺气减蚀.研究成果将为弧形闸门出口掺气减蚀水力设计提供科学依据,保障高水头泄洪建筑物的安全运行.
AbstractList TV131.3; 高水头泄洪放空洞弧形闸门出口往往需要设置掺气设施以减免高速水流空化空蚀破坏.由于有压出口区域水流流态与结构壁面相互作用复杂,易导致掺气减蚀保护失效,目前,其核心水力致灾原因尚不明确,并且制约着适用于弧形闸门掺气减蚀的技术研发.本文结合实际工程中高水头弧形闸门出口侧墙空蚀破坏实例,采用水力学模型试验与数值模拟方法,对空蚀破坏的水力学成因进行系统分析,并提出了掺气减蚀水力设计方案.结果表明,弧形闸门泄流运行时,高速水流横向扩散显著,侧空腔掺气效果较差,在侧向附壁过程中形成侧墙冲击-低压反射区,导致附壁区水流空化数较低,并存在侧墙清水区域,二者共同作用导致泄洪放空洞侧墙发生空化空蚀破坏,这种不利影响在大流量、闸门局开条件下更为严重.基于提高侧墙水流空化数与改善侧掺气空腔掺气效果,提出了侧墙二级收缩掺气坎,实现低压空蚀风险区域水流脱壁,末端侧向水流附壁全断面掺气减蚀.研究成果将为弧形闸门出口掺气减蚀水力设计提供科学依据,保障高水头泄洪建筑物的安全运行.
Abstract_FL Objective In high-head spillway tunnels,aeration devices are often installed at the outset of the radial gate to reduce cavitation erosion.Despite these precautions,cavitation erosion persists due to the complex flow pattern near the radial gate.Once the flow is discharged into an open chan-nel,the pressure relief effect lead to the diffusion of high-speed flow and the flow quickly reaches the bottom and side walls of the channel,result-ing clogging risk in aeration area.Up to the present,the hydraulic reason for weakening the aeration performance are still unknown,and there are little hydraulic designs to improve the aeration protection for the radial gate.Typically,the lateral and bottom aerators are installed at the pressur-ized outlet when the flow is directed into an open channel under high-head conditions.However,the lateral and vertical diffusions of flow com-plicates the flow pattern near the radial gate,influencing the effectiveness of the lateral and bottom aerators.It is significant to understand the aer-ation protection nullification mechanism and propose effective aerator designs for the sidewall and bottom protection.The present study focused on a given prototype hydraulic engineering featuring a radial gate in a high-head spillway tunnel,where the tunnel wall is damaged by cavitation erosion. Methods Focused on the cavitation erosion in the given prototype tunnel,the present study obtained the hydraulic characteristics based on experi-mental and numerical results,optimizing the lateral aerator.The physical model was designed based on Froude similarity criterion,and the numer-ical simulation model was established according to the prototype tunnel.The effects of aeration devices on the aeration protection efficiency were analyzed using aeration flow pattern,cavity length,flow velocity field and flow cavitation number.In the present study,the RNG k-ε turbulent model was used to simulate three-dimensional flow field of the radial gate,the VOF was used to simulate the aeration cavity,and the partial dif-ferential equations were discretized based on the control volume method,the SIMPLER model was employed for numerical simulation.The three dimensional structured grids were constructed for the spillway tunnel,and the high grid density in the radial gate,aeration cavity and wall bound-ary areas can enhance the accuracy of calculation. Results and Discussions The experimental results show that the three dimensional diffusion is significant when the flow is separated from the ra-dial gate,featuring strong water-wing effect above the flow.The lateral aeration cavity is shorter than the bottom aeration cavity,resulting in weakened lateral aeration.The re-attachment flow cannot entrain enough air into the flow.Moreover,the lateral diffused flow may encroach upon the bottom cavity area,increasing the risk of cavity clogging.The numerical results show that the lateral impact and rebound motion of flow on the sidewall cause a low-pressure area when the high-speed flow discharges from the radial gate.The cavitation erosion observed in the prototype tunnel aligns with the low pressure and clear water area on the sidewall.For different gate opening tests,the above phenomenon persists due to the constrain of the radial gate on the flow diffusion.It is also the main reason for the side-wall cavitation erosion under high-speed flow and low flow cavitation coefficient.With the increase in gate opening,the restraining effect of radial gate decreases and the lateral cavity length increases.Espe-cially under high-head and partial gate opening conditions,the adverse phenomenon is even worse.In order to prevent the cavitation erosion on sidewalls,the current study proposed two hydraulic design principles:increasing the sidewall pressure and flow cavitation coefficient and optimiz-ing the design of shrinking side-wall aerator.Based on experimental and numerical results,the one-step and two-step sidewall aeration designs are proposed to improve the flow cavitation coefficient and eliminate the clear water area.The optimized aerators can make the flow cavitation num-ber σ larger than 0.3 for all gate opening tests.However,for the one-step aerator,the lateral cavity length surpasses the bottom cavity for large gate opening(Fr<6.0),leading to the weaken aeration.The ratio of lateral and bottom cavity length is smaller than 1.0 to avoid strong water-wing effects and cavity plugging.The process of lateral impact and rebound can reduce the clear water area of the sidewall,while the multi-step aeration process can improve the aeration level in the cavitation erosion dangerous area.It should be noted that the present study mainly focus on the macroscopic aeration properties,such as aeration cavity length and flow cavitation number,which can verify the availability of aeration pro-tection.For the microscopic aeration properties,such as air concentration distribution,bubble quantity and size distributions,the effects of aerator factors on air-water flows need to be further explored. Conclusions The present study conducted a series of experiments and numerical simulations to investigate the reason of the cavitation erosion in high-head spillway tunnels,proposing effective lateral aerator designs to improve the aeration protection.The lateral flow causes the weakened aeration,resulting in a clear water area on the sidewall and low flow cavitation coefficient.For all gate opening tests,the combination of two-step lateral aerator and the bottom aerator can effectively eliminate the clear water area on the tunnel walls,and the three-dimensional aeration is suffi-cient with the steady air-water flow pattern.The excellent aeration performance of the two-step aerator is adaptable for all gate opening tests and can improve the safety of high-head spillway tunnels.
Author 邓军
王伟
卫望汝
AuthorAffiliation 四川水利职业技术学院,四川 成都 611830%四川大学 山区河流保护与治理全国重点实验室,四川 成都 610065
AuthorAffiliation_xml – name: 四川水利职业技术学院,四川 成都 611830%四川大学 山区河流保护与治理全国重点实验室,四川 成都 610065
Author_FL DENG Jun
WANG Wei
WEI Wangru
Author_FL_xml – sequence: 1
  fullname: WANG Wei
– sequence: 2
  fullname: DENG Jun
– sequence: 3
  fullname: WEI Wangru
Author_xml – sequence: 1
  fullname: 王伟
– sequence: 2
  fullname: 邓军
– sequence: 3
  fullname: 卫望汝
BookMark eNotj71Kw0AAgG-oYK19Al_BxPtPbtTiHxRcdA7J5VKMkoJHMWO3oohdilUnqUIsLh2KaFCfxkvMW1jQ6du-j28F1JJuogBYQ9BGTHC0Edux7imtbAwxgZBQpwbqGApuEUz5MmhqfRxAwilhjLM62KpebovZ3DzNzUdmPifV-K0aP5tBboaP31-ZmdyV09xc3ZQX70U_M8PL4jovZiMzGP7c98uHUTl9XQVLkX-qVfOfDXC0s33Y2rPaB7v7rc22pREUwqKIuwJFQUQDgSTGijImEGIq9DHjTgi57ypOlascBKV0pAxJyIgkLmdu5DPSAOt_3nM_ifyk48Xd3lmyKHpahmkaeB15ki62GcQQCvILj8Boww
ClassificationCodes TV131.3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.15961/j.jsuese.202300347
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Cavitation Characteristics and Aeration Mitigation for the Sidewall of a Radial Gate in a High-head Tunnel
EndPage 92
ExternalDocumentID scdxxb_gckx202502009
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金)
  funderid: (国家自然科学基金); (国家自然科学基金); (国家自然科学基金); (国家自然科学基金)
GroupedDBID -0C
-SC
-S~
2B.
2RA
4A8
5VR
92I
92M
93N
9D9
9DC
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CQIGP
GROUPED_DOAJ
PB1
PB9
PSX
Q--
R-C
RT3
T8S
TCJ
U1F
U5C
ID FETCH-LOGICAL-s1099-416891fbf4b91c22e4559115eda2567d06a8e64e8e710cc7ccd3d53c38658fa53
ISSN 2096-3246
IngestDate Thu May 29 03:53:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords high-speed flow
radial gate
cavitation erosion
弧形闸门
空蚀破坏
高速水流
aeration protection
bottom tunnel
泄洪洞
掺气减蚀
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1099-416891fbf4b91c22e4559115eda2567d06a8e64e8e710cc7ccd3d53c38658fa53
PageCount 9
ParticipantIDs wanfang_journals_scdxxb_gckx202502009
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle 工程科学与技术
PublicationTitle_FL Advanced Engineering Sciences
PublicationYear 2025
Publisher 四川水利职业技术学院,四川 成都 611830%四川大学 山区河流保护与治理全国重点实验室,四川 成都 610065
Publisher_xml – name: 四川水利职业技术学院,四川 成都 611830%四川大学 山区河流保护与治理全国重点实验室,四川 成都 610065
SSID ssib036435565
ssib050593459
ssib041261190
ssib030194745
ssib051371919
ssj0003313526
ssib027967859
Score 2.4139004
Snippet TV131.3; 高水头泄洪放空洞弧形闸门出口往往需要设置掺气设施以减免高速水流空化空蚀破坏.由于有压出口区域水流流态与结构壁面相互作用复杂,易导致掺气减蚀保护失效,目前,...
SourceID wanfang
SourceType Aggregation Database
StartPage 84
Title 高水头弧形闸门出口侧墙空化特性及掺气减蚀研究
URI https://d.wanfangdata.com.cn/periodical/scdxxb-gckx202502009
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-3246
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0003313526
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAMJR68SKKit_04J7K02Q_kp1j8l5KEfTUQm81n4rCE2wLpafeiiL2Uqx6kirU4qWHIlrUX2Pes__Cmc22ib4eqvB4LLOzs_Ox7Mwkmx3HucndPFU6CTq5TDFBkTl0EnRkHcCkR3qlXwYpPe-4e8-fnpV35tTc2Pj91qmlpcX0VrZy7Hcl_2NVhKFd6SvZf7DsEVEEYBvti_9oYfw_kY1ZDCyMGGgW-yxyWSRZrFgobSPqsjAwjR4LOSFDwCJtG6GmLo2Q0DSmWChYjGNjOwqHALAYMeEQp8vAJ4hGCNCk2rXIOFyHBhIbZMMPSDsF9saaQUj4RLDuqin77fjYcItwZXo105FpBAw8wxIK4hsmNU1E09U0fQYo7NEpZcNjbEZLUgO0eoBpFEwYznBY1PQgoEf6rKmBaUQeg1770QhXzdkws5hpHOISuuEden9YQ2uSEqXXHumv5h3CUd5b8gEpHtXPu6PEJ81IJOEaUQQad9LH_E24jKvjeDELwlqUyE-aPo9-tUmtuTiLhGkoYpX4nLKyIJ9Ioq11QjaWQS5QiURH2QWFc-NyI9YCUicZgpvFgggxg9is2dCowkCQ8snFpFC2cV0cE-MOhup-28_WF5Hb_YS3nGZdI9CGX3VlxBHHrsCvPfsjqklJ99ti7uyK-rbWv25MX8jy5eV0_kH2eJlWhVt_4XuKo993Ww9d0OPwADBYawJ69HYgW_UfBMbrSjXnAKTH0aLNe2VFBTFbtzEpTwQe2AsSKRYUwqMCFFTh8lAl9uozEuj2qDjm28F-mfQftMLcmbPOGZufToT1ZnPOGVt5eN6JDj69HuzuVR_2qm_b1fetg80vB5sfq7X9av39zx_b1dab4c5-9eLV8NnXwep2tf588HJ_sLtRra3_ers6fLcx3Pl8wZmdime60x1bfKWzQC_LO5ioafDKtJQpeBnnhVQKAyNV5AlmSUHu-okufFnoArf2LAuyLBe5EhnVENZlosRFZ7z_pF9cciZ4VgpZeokGlUg3L3QmvLQsCpAYPXM3vewwK_O83VwX5o-z4ZUT4l11Tje7wTVnfPHpUnEdU4fF9Iax_m9gWMvf
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%AB%98%E6%B0%B4%E5%A4%B4%E5%BC%A7%E5%BD%A2%E9%97%B8%E9%97%A8%E5%87%BA%E5%8F%A3%E4%BE%A7%E5%A2%99%E7%A9%BA%E5%8C%96%E7%89%B9%E6%80%A7%E5%8F%8A%E6%8E%BA%E6%B0%94%E5%87%8F%E8%9A%80%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%B7%A5%E7%A8%8B%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF&rft.au=%E7%8E%8B%E4%BC%9F&rft.au=%E9%82%93%E5%86%9B&rft.au=%E5%8D%AB%E6%9C%9B%E6%B1%9D&rft.date=2025-03-01&rft.pub=%E5%9B%9B%E5%B7%9D%E6%B0%B4%E5%88%A9%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%9B%9B%E5%B7%9D+%E6%88%90%E9%83%BD+611830%25%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6+%E5%B1%B1%E5%8C%BA%E6%B2%B3%E6%B5%81%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%B2%BB%E7%90%86%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%9B%9B%E5%B7%9D+%E6%88%90%E9%83%BD+610065&rft.issn=2096-3246&rft.volume=57&rft.issue=2&rft.spage=84&rft.epage=92&rft_id=info:doi/10.15961%2Fj.jsuese.202300347&rft.externalDocID=scdxxb_gckx202502009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fscdxxb-gckx%2Fscdxxb-gckx.jpg