基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力模型

TU375.3; 针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型.首先,基于核函数相加性和自动相关性,构造出一种新型的各向异性混合核函数;然后,结合高斯过程回归原理和各向异性混合核函数,建立了RC柱的概率抗剪承载力模型;进而采用极大似然估计法,确定了RC柱概率抗剪承载力模型的超参数;最后,基于91组剪切破坏RC柱的试验数据,通过与传统核函数形式和传统模型进行对比分析,验证了该模型的有效性.结果表明:与传统核函数相比,各向异性混合核函数的确定性预测指标均方根误差RMSE...

Full description

Saved in:
Bibliographic Details
Published in工程科学与技术 Vol. 57; no. 1; pp. 287 - 295
Main Authors 李启明, 张鹏飞, 喻泽成, 余波
Format Journal Article
LanguageChinese
Published 中国电建集团 河南省电力勘测设计院有限公司,河南 郑州 450000%广西大学 土木建筑工程学院,广西 南宁 530004 2025
广西大学 土木建筑工程学院,广西 南宁 530004
Subjects
Online AccessGet full text
ISSN2096-3246
DOI10.12454/j.jsuese.202300328

Cover

Abstract TU375.3; 针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型.首先,基于核函数相加性和自动相关性,构造出一种新型的各向异性混合核函数;然后,结合高斯过程回归原理和各向异性混合核函数,建立了RC柱的概率抗剪承载力模型;进而采用极大似然估计法,确定了RC柱概率抗剪承载力模型的超参数;最后,基于91组剪切破坏RC柱的试验数据,通过与传统核函数形式和传统模型进行对比分析,验证了该模型的有效性.结果表明:与传统核函数相比,各向异性混合核函数的确定性预测指标均方根误差RMSE和平均绝对误差MAE分别降低约16%和19%,概率性预测值指标负对数预测密度NLPD和平均标准化对数损失MSLL分别降低约15%和23%;与传统机器学习模型相比,本文模型的均方根误差RMSE和平均绝对误差MAE分别降低约38%和39%;根据所提出的概率模型能够建立概率密度函数曲线和置信区间,从而合理描述抗剪承载力的不确定性并校准分析传统模型的预测精度.
AbstractList TU375.3; 针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型.首先,基于核函数相加性和自动相关性,构造出一种新型的各向异性混合核函数;然后,结合高斯过程回归原理和各向异性混合核函数,建立了RC柱的概率抗剪承载力模型;进而采用极大似然估计法,确定了RC柱概率抗剪承载力模型的超参数;最后,基于91组剪切破坏RC柱的试验数据,通过与传统核函数形式和传统模型进行对比分析,验证了该模型的有效性.结果表明:与传统核函数相比,各向异性混合核函数的确定性预测指标均方根误差RMSE和平均绝对误差MAE分别降低约16%和19%,概率性预测值指标负对数预测密度NLPD和平均标准化对数损失MSLL分别降低约15%和23%;与传统机器学习模型相比,本文模型的均方根误差RMSE和平均绝对误差MAE分别降低约38%和39%;根据所提出的概率模型能够建立概率密度函数曲线和置信区间,从而合理描述抗剪承载力的不确定性并校准分析传统模型的预测精度.
Abstract_FL A probabilistic shear strength model for reinforced concrete(RC)columns is proposed based on Gaussian process regression(GPR)with an anisotropic mixed kernel function to address the limitations of traditional models,which often exhibit low nonlinear approximation ability and poor generalization performance.A new anisotropic mixed kernel function is developed using the additivity and autocorrelation properties of the Matern and Rational Quadratic kernel functions,while the automatic relevance determination function is introduced to account for the effects of various feature parameters.The probabilistic shear strength model for RC columns is established by integrating the anisotropic mixed kernel function with the Gaussian process regression algorithm.The posterior distribution of model hyperparameters is obtained using Bayesian infer-ence,and the hyperparameters of the probabilistic shear strength model are determined through the maximum likelihood estimation method.The effectiveness of the proposed model is validated by comparing it with traditional kernel functions,machine learning models,and mechanical mod-els using 91 sets of experimental data.The analysis results indicated that the deterministic prediction indices RMSE and MAE of the proposed mod-el are reduced by approximately 16%and 19%,respectively,compared to traditional kernel functions.In contrast,the probabilistic prediction in-dices NLPD and MSLL are reduced by about 15%and 23%,respectively.Compared to traditional machine learning models,the RMSE and MAE of the proposed model are decreased by 38%and 39%,respectively.The proposed model demonstrated high prediction accuracy and generalization per-formance and effectively quantified the uncertainty in the shear strength of RC columns.
Author 喻泽成
李启明
余波
张鹏飞
AuthorAffiliation 广西大学 土木建筑工程学院,广西 南宁 530004;中国电建集团 河南省电力勘测设计院有限公司,河南 郑州 450000%广西大学 土木建筑工程学院,广西 南宁 530004
AuthorAffiliation_xml – name: 广西大学 土木建筑工程学院,广西 南宁 530004;中国电建集团 河南省电力勘测设计院有限公司,河南 郑州 450000%广西大学 土木建筑工程学院,广西 南宁 530004
Author_FL LI Qiming
ZHANG Pengfei
YU Bo
YU Zecheng
Author_FL_xml – sequence: 1
  fullname: LI Qiming
– sequence: 2
  fullname: ZHANG Pengfei
– sequence: 3
  fullname: YU Zecheng
– sequence: 4
  fullname: YU Bo
Author_xml – sequence: 1
  fullname: 李启明
– sequence: 2
  fullname: 张鹏飞
– sequence: 3
  fullname: 喻泽成
– sequence: 4
  fullname: 余波
BookMark eNotkE1LAkEAhudgkJm_oL_Q2nztzHgM6QuEIKqrzO7OShYrNEgeQwRTQSzogwStS0kdqpMhLf6ZZrR_kVCn9_DA88C7BBJROVIArCCYQZi6dK2UKemK0iqDISYQEiwSIIlhljkEU7YI0lofeZAwSlyXuUlwaAbj73HHdOume2m-avb82Y5GpnthHz5NI7bX7z-vd_bmbTZpTIdt0-ub-Gp6X9_L2cGHfapNOw3bujXNF9uczOLYtHp2-Gj67WWwEMoTrdL_mwIHmxv7uW0nv7u1k1vPOxpBLhymVMg5UlwEIouV9KikiEuXEZKFSHKGhQ8lVUHIiSeEL6UIPM7njMGAIp-kwOqf90xGoYyKhVK5chrNiwXtB9WqVyj6x9X5FS5EEAvyC1sTdbU
ClassificationCodes TU375.3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12454/j.jsuese.202300328
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Probabilistic Shear Strength Model of RC Columns Based on Gaussian Process Regression with Anisotropic Compound Kernel Function
EndPage 295
ExternalDocumentID scdxxb_gckx202501028
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金); (广西重点研发计划项目); (广西科技重大专项); (广西科技重大专项); (南宁市科技计划项目); (南宁市良庆区科技计划重大项目)
  funderid: (国家自然科学基金); (国家自然科学基金); (广西重点研发计划项目); (广西科技重大专项); (广西科技重大专项); (南宁市科技计划项目); (南宁市良庆区科技计划重大项目)
GroupedDBID -0C
-SC
-S~
2B.
2RA
4A8
5VR
92I
92M
93N
9D9
9DC
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CQIGP
GROUPED_DOAJ
PB1
PB9
PSX
Q--
R-C
RT3
T8S
TCJ
U1F
U5C
ID FETCH-LOGICAL-s1078-6eef771e78d892eab4a417a5633901a7628c0a4edf73b88caa8db7790160d41c3
ISSN 2096-3246
IngestDate Thu May 29 03:53:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 高斯过程回归
probabilistic shear strength model
钢筋混凝土柱
各向异性混合核函数
不确定性
概率抗剪承载力模型
reinforced concrete columns
anisotropic compound kernel function
Gaussian process regression
uncertainty
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1078-6eef771e78d892eab4a417a5633901a7628c0a4edf73b88caa8db7790160d41c3
PageCount 9
ParticipantIDs wanfang_journals_scdxxb_gckx202501028
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 工程科学与技术
PublicationTitle_FL Advanced Engineering Sciences
PublicationYear 2025
Publisher 中国电建集团 河南省电力勘测设计院有限公司,河南 郑州 450000%广西大学 土木建筑工程学院,广西 南宁 530004
广西大学 土木建筑工程学院,广西 南宁 530004
Publisher_xml – name: 广西大学 土木建筑工程学院,广西 南宁 530004
– name: 中国电建集团 河南省电力勘测设计院有限公司,河南 郑州 450000%广西大学 土木建筑工程学院,广西 南宁 530004
SSID ssib036435565
ssib050593459
ssib041261190
ssib030194745
ssib051371919
ssj0003313526
ssib027967859
Score 2.4076746
Snippet TU375.3; 针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率...
SourceID wanfang
SourceType Aggregation Database
StartPage 287
Title 基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力模型
URI https://d.wanfangdata.com.cn/periodical/scdxxb-gckx202501028
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-3246
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0003313526
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PixVHEB90veQiSgxqVDykT48Xp3u6p6uPM_PmIYF4EBVvy8y8eYYIG8iusHgKIqy7gmwCmhBBk0sUPagng2TxQ_gVnFnzLayq6bdvlvWgwjI0NdVdVb_qna7q13-C4JtJJGu-AzCUExhqXVZDKAs7LGVdKRM5U_Amse_PxWcv6u8um8v7Ft70Vi1dWym_ra5_cF_J53gVaehX2iX7CZ7daRQJWEb_4hM9jM-P8rHIjXBjkSYi1_SEnCmhAO0LTlIhzQQokce0rCGxVEgt_XlmIEoSihSIAvhqRBSHFUORO5GkwjGPQ7axyEGkY2LLrUhAQMrtIA9Lx7pO0SuH-ujzGddDHSULiVkRS5oCKwKJcKwIoJyEKY6aJyEjVsQwT8rVQSRsEIqCtB9Xs2RUx_SUsmRrB0AyItEEEjBILBfBIN0ytGnW7ZgwmuNI1sZkPORzFsYzYWRSJ2DMEEWoU58FoUpZ5zTycCLMLpyzaEbKeZZE9adfuk3a_K_ilU5GHmRqC61ComFNUva-o1cQe55EDbhZRS0TfiPG2JKtIHfV99AaAqzzccplhD_JRZr7AqHuSNtEeczQSx0FUaLqiHHGhTGpq7K9CgyoAkSzLolK5ANNF2WEQnW2zByPXqQCNqm5u3r_Ddi8jHqT9xv0ILDEtNP2ro6w4_-ZCSrbK2_QQ8qQzSAHJqJkZD5WKszEh5gbxP2BvTv5fNcHzI_SPsbrAj7V3fK6J5ZQ2mgOJn6kazDpSF1M1-n4yXnotLOgdbmarK6Wi1eqq6vUSeigRtgfHFA0Sdib58FBTlmH8eE8h8AB1unelRMRpgjGzJceaKliKec_ZRu6g7N3AJSRkZXOn8lI4WcUSbrzgi7VnIHiT1sjg87sNYe3Ky5Ni6Urvcj6wqHgoE-JTyfd9-1wsO_6D18Gl5qHr96-utNs3mw2f23-u9H-8qh9-bLZvNX-9W-zttXeff7_0z_ae8_evV7bfny7uf-g2fpt-8-b57P24Yv2nxvbd9bajd-b9Sft-ut3W1vNxv328d_Ng9tHgovj_EJ2dujvgBkuS8xehnFdT62VtYUJOFUXpS60tIWJI5qsLTCUgyosdD2Z2qgEqIoCJiWdoSrjcKJlFX0VLCz9tFQfDU4jSFE4LRwYW9N5AGURAyYrlS1rQFinxwLhcVj03_jlxQ_59fhH8n0dfEHlbr72RLCw8vO1-iRmMCvlKe4R7wFyT_H1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%90%84%E5%90%91%E5%BC%82%E6%80%A7%E6%B7%B7%E5%90%88%E6%A0%B8%E5%87%BD%E6%95%B0%E9%AB%98%E6%96%AF%E8%BF%87%E7%A8%8B%E5%9B%9E%E5%BD%92%E7%9A%84RC%E6%9F%B1%E6%A6%82%E7%8E%87%E6%8A%97%E5%89%AA%E6%89%BF%E8%BD%BD%E5%8A%9B%E6%A8%A1%E5%9E%8B&rft.jtitle=%E5%B7%A5%E7%A8%8B%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF&rft.au=%E6%9D%8E%E5%90%AF%E6%98%8E&rft.au=%E5%BC%A0%E9%B9%8F%E9%A3%9E&rft.au=%E5%96%BB%E6%B3%BD%E6%88%90&rft.au=%E4%BD%99%E6%B3%A2&rft.date=2025&rft.pub=%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%BB%BA%E9%9B%86%E5%9B%A2+%E6%B2%B3%E5%8D%97%E7%9C%81%E7%94%B5%E5%8A%9B%E5%8B%98%E6%B5%8B%E8%AE%BE%E8%AE%A1%E9%99%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B2%B3%E5%8D%97+%E9%83%91%E5%B7%9E+450000%25%E5%B9%BF%E8%A5%BF%E5%A4%A7%E5%AD%A6+%E5%9C%9F%E6%9C%A8%E5%BB%BA%E7%AD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E8%A5%BF+%E5%8D%97%E5%AE%81+530004&rft.issn=2096-3246&rft.volume=57&rft.issue=1&rft.spage=287&rft.epage=295&rft_id=info:doi/10.12454%2Fj.jsuese.202300328&rft.externalDocID=scdxxb_gckx202501028
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fscdxxb-gckx%2Fscdxxb-gckx.jpg