独库高速公路克扎依—巩乃斯段雪崩易发性评价

P642.21; 独库高速公路克扎依—巩乃斯段以高山地貌为主,地形切割剧烈,为雪崩发育提供了有利的地形条件,对该区域进行雪崩易发性评价是独库高速公路安全建设及运行的重要前提.通过遥感解译和现场调查等手段获取149个雪崩点的因子数据,通过对因子进行相关性检测,筛选出10个评价因子,构成雪崩评价因子体系.在此基础上,运用K均值聚类法和随机法提取出非雪崩点和原始雪崩点构成样本集,通过机器学习中的多层感知器、支持向量机算法对研究区域开展雪崩易发性评价.研究结果表明,随机法和K均值聚类法提取出的样本集分别带入算法中训练,R-SVM、R-MLP、K-SVM、K-MLP四种模型的Kappa系数均大于0.6,...

Full description

Saved in:
Bibliographic Details
Published in中国地质灾害与防治学报 Vol. 35; no. 1; pp. 60 - 71
Main Authors 程秋连, 刘杰, 杨治纬, 张天意, 王斌
Format Journal Article
LanguageChinese
Published 新疆农业大学交通与物流工程学院,新疆乌鲁木齐 830052 2024
新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006%新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006
Subjects
Online AccessGet full text
ISSN1003-8035
DOI10.16031/j.cnki.issn.1003-8035.202302009

Cover

Abstract P642.21; 独库高速公路克扎依—巩乃斯段以高山地貌为主,地形切割剧烈,为雪崩发育提供了有利的地形条件,对该区域进行雪崩易发性评价是独库高速公路安全建设及运行的重要前提.通过遥感解译和现场调查等手段获取149个雪崩点的因子数据,通过对因子进行相关性检测,筛选出10个评价因子,构成雪崩评价因子体系.在此基础上,运用K均值聚类法和随机法提取出非雪崩点和原始雪崩点构成样本集,通过机器学习中的多层感知器、支持向量机算法对研究区域开展雪崩易发性评价.研究结果表明,随机法和K均值聚类法提取出的样本集分别带入算法中训练,R-SVM、R-MLP、K-SVM、K-MLP四种模型的Kappa系数均大于0.6,4组模型对验证数据集的预测结果与实际值存在高度的一致性.经多层感知器训练的AUC值由0.762提高至0.983,经支持向量机训练的AUC值由0.724提高至0.95 1.基于本研究预测性能最佳的K-MLP模型分区显示该研究区雪崩发育对拟建线路影响较小,但对于隧道洞口可能会造成威胁.本研究可为独库高速公路建设、运营以及雪崩灾害防治工作提供理论支撑和方法参考.
AbstractList P642.21; 独库高速公路克扎依—巩乃斯段以高山地貌为主,地形切割剧烈,为雪崩发育提供了有利的地形条件,对该区域进行雪崩易发性评价是独库高速公路安全建设及运行的重要前提.通过遥感解译和现场调查等手段获取149个雪崩点的因子数据,通过对因子进行相关性检测,筛选出10个评价因子,构成雪崩评价因子体系.在此基础上,运用K均值聚类法和随机法提取出非雪崩点和原始雪崩点构成样本集,通过机器学习中的多层感知器、支持向量机算法对研究区域开展雪崩易发性评价.研究结果表明,随机法和K均值聚类法提取出的样本集分别带入算法中训练,R-SVM、R-MLP、K-SVM、K-MLP四种模型的Kappa系数均大于0.6,4组模型对验证数据集的预测结果与实际值存在高度的一致性.经多层感知器训练的AUC值由0.762提高至0.983,经支持向量机训练的AUC值由0.724提高至0.95 1.基于本研究预测性能最佳的K-MLP模型分区显示该研究区雪崩发育对拟建线路影响较小,但对于隧道洞口可能会造成威胁.本研究可为独库高速公路建设、运营以及雪崩灾害防治工作提供理论支撑和方法参考.
Abstract_FL The Kezhayi to Gongnaisi section of the Duku expressway is predominantly characterized by alpine landforms,with steep terrain cutting that provides conducive conditions for avalanche development.The study on the evaluation of snow avalanche susceptibility in this area is a crucial prerequisite for the safety construction and operation of the Duku expressway.The 149 snow avalanche points were collected by employing remote sensing interpretation and field investigations.Through correlation analysis of these factors,10 evaluation factors were selected,forming the avalanche evaluation factor system.Subsequently,the non-avalanche points and original avalanche points were extracted using the K-means clustering method and random method to create a sample set.Machine learning techniques,including multilayer perceptron(MLP)and support vector machine(SVM)algorithms,were utilized to assess avalanche susceptibility in the study area.The results show that the sample datasets extracted by the random and K-means clustering methods were used for training,the Kappa coefficient of the R-SVM,R-MLP,K-SVM,and K-MLP models were greater than 0.6.These four sets of models exhibited a high degree of consistency between the predicted results and actual values of the validation dataset.The AUC(area under curve)value trained by MLP increased from 0.762 to 0.983,while the AUC value trained by SVM increased from 0.724 to 0.951.Based on the K-MLP model partition with the highest evaluation accuracy,the snow avalanche development in the research area has a relatively minor impact on the proposed route but may pose a threat to tunnel entrances.This study provides theoretical support and methodological references for the construction,operation and mitigation of sonw avalanche disasters for the Duku expressway.
Author 杨治纬
刘杰
张天意
程秋连
王斌
AuthorAffiliation 新疆农业大学交通与物流工程学院,新疆乌鲁木齐 830052;新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006%新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006
AuthorAffiliation_xml – name: 新疆农业大学交通与物流工程学院,新疆乌鲁木齐 830052;新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006%新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006
Author_FL ZHANG Tianyi
YANG Zhiwei
LIU Jie
WANG Bin
CHENG Qiulian
Author_FL_xml – sequence: 1
  fullname: CHENG Qiulian
– sequence: 2
  fullname: LIU Jie
– sequence: 3
  fullname: YANG Zhiwei
– sequence: 4
  fullname: ZHANG Tianyi
– sequence: 5
  fullname: WANG Bin
Author_xml – sequence: 1
  fullname: 程秋连
– sequence: 2
  fullname: 刘杰
– sequence: 3
  fullname: 杨治纬
– sequence: 4
  fullname: 张天意
– sequence: 5
  fullname: 王斌
BookMark eNo9j81Kw0AcxPdQwVr7Hh5M_O9Hku1JpPgFBS96LrubpKbKFgyi5lTQHqRQkYoURDxKtZiLElTwYaSJ7VsYUTwNDMPM_OZQQbe0h9ACBhPbQPFS01R6LzCDMNQmBqAGB2qZBAgFAlApoOK_O4vKYRhIoDajjBJSRMtf3VH61p8-Dqbtu7QzmiRx2ulm573xx-1n-ypNhuPX0-w6zp5epjcP6fMwG_TTi8usfT-Jz8bvyTya8cV-6JX_tIR21la3qxtGbWt9s7pSM0IMjm240pI-CGCi4lElufJ9UWG2ch2HcqaUEERw_pPgOD9uWYxLxYjruopI2_NoCS3-9h4J7QvdqDdbhwc6X6xHDTeKdk_86FjmzAxyWJt-A_NRapc
ClassificationCodes P642.21
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16031/j.cnki.issn.1003-8035.202302009
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Avalanche susceptibility evaluation of the Kezhayi to Gongnaisi section of the Duku expressway
EndPage 71
ExternalDocumentID zgdzzhyfzxb202401006
GrantInformation_xml – fundername: (交通运输行业重点科技项目); (新疆交通运输科技项目); (新疆交投集团揭榜挂帅科技项目); (新疆交通设计院科技研发项目)
  funderid: (交通运输行业重点科技项目); (新疆交通运输科技项目); (新疆交投集团揭榜挂帅科技项目); (新疆交通设计院科技研发项目)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1076-db5bf0a04a9e3cb8cffa946cd77384ccaa2a88f0a0810235548bc42dddc2b6ee3
ISSN 1003-8035
IngestDate Thu May 29 04:07:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ArcGIS
易发性评价
支持向量机
support vector machine
susceptibility evaluation
multilayer perceptron
avalanche
雪崩
多层感知器
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1076-db5bf0a04a9e3cb8cffa946cd77384ccaa2a88f0a0810235548bc42dddc2b6ee3
PageCount 12
ParticipantIDs wanfang_journals_zgdzzhyfzxb202401006
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 中国地质灾害与防治学报
PublicationTitle_FL The Chinese Journal of Geological Hazard and Control
PublicationYear 2024
Publisher 新疆农业大学交通与物流工程学院,新疆乌鲁木齐 830052
新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006%新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006
Publisher_xml – name: 新疆农业大学交通与物流工程学院,新疆乌鲁木齐 830052
– name: 新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006%新疆交通规划勘察设计研究院有限公司/科技研发中心,新疆乌鲁木齐 830006
SSID ssib036434322
ssj0002925265
ssib000271184
ssib051368647
ssib006568360
ssib000502065
ssib002258245
ssib000862046
Score 2.3799663
Snippet P642.21; 独库高速公路克扎依—巩乃斯段以高山地貌为主,地形切割剧烈,为雪崩发育提供了有利的地形条件,对该区域进行雪崩易发性评价是独库高速公路安全建设及运行的重要前...
SourceID wanfang
SourceType Aggregation Database
StartPage 60
Title 独库高速公路克扎依—巩乃斯段雪崩易发性评价
URI https://d.wanfangdata.com.cn/periodical/zgdzzhyfzxb202401006
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1003-8035
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002925265
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAMJQWxIsoKn7TgwuCvJqPzWb3JJvXlCLoqYXeSjYfrQhPsC3oOxW0BykoUpGCiEepFntRigr-GOl7tv_CmUny3ooFq5ew2Z2dzyQ7u9mdcZyrRYRJoj2vlWeB2-JhmbdU6fnwXhVGpaUwwuBB4dt3xPQsvzUXzo2Mjlm7llaWzUTWPfRcyf9YFerArnhK9h8sO0AKFVAG-8IVLAzXI9mYJRGTMdNtloQs1kwFLFFMx0xJLOAmhilskiHBSBZHTDc10DERTAJYwhLO4oSpyWbrAyeEAKyoCWACBFaCusM1YXGIJBRQ1wTMCVggaWQD8E8x5REJl-kIqUNfyQlhDMhtt5gqAWASOwLOuCq0WewS24BckrAe8glNyEBQ90L-FdKNfSQHV8CPMJNMC2JAMx02TxaiAWQofYR8YQG6ArPJEAS4l6REgUqJ3WELVWhpEYpQ88MIlqSMNtMusdBoBeSWU_YKiz9cW601i6JGWJCCGBAofyWh0g2yyBKME2HeWFpb6ojQrhVlsBNorTZnaEk_wAO6A2AfXrbDOKnM30YwEFiSRYExTU8Y2Em51yUmI7CWjz3ciSjdKkBMM_7Vd_Z7Xg1mVaKH2i2qEuX8MeBiknIacbPOvbtEZGJAZMLHCS7-fhs6G4MtoN2FvNtdfFR2HxrUuetR4PwxPxJcWCsj9c9xmAZbXm8ISH-L0ohJFeyof6H0rZ_lMGWRVlS8QNBp6oFXH3qBkE1UPXTgfOVj0gjaJ1GLcsy51kh74y-y0um_Tpl2FixHdeakc6KeYY7r6nNxyhnpLp52bv5c3-593Tj4sHmw-ra3tr2_u9NbW-8_fbb3_c2P1Ze93a29L4_7r3b6Hz8fvH7f-7TV39zoPX_RX323v_Nk79vuGWd2KplpT7fq3CmtJc-NRCs3oSnd1OWpKoLMyKwsU8VFlkdRIDl8tlM_lRIhJAZvgUmFNBn38zzPfCOKIjjrjHbud4pzzngKk0JcKHZTWjCWhhdBUQhpokAErpHnHVYLPF9_G5fmD7PuhSPCXXSOY7la57zkjC4_WCkug-e_bK7Qc_ELwVu_0w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%8B%AC%E5%BA%93%E9%AB%98%E9%80%9F%E5%85%AC%E8%B7%AF%E5%85%8B%E6%89%8E%E4%BE%9D%E2%80%94%E5%B7%A9%E4%B9%83%E6%96%AF%E6%AE%B5%E9%9B%AA%E5%B4%A9%E6%98%93%E5%8F%91%E6%80%A7%E8%AF%84%E4%BB%B7&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E7%81%BE%E5%AE%B3%E4%B8%8E%E9%98%B2%E6%B2%BB%E5%AD%A6%E6%8A%A5&rft.au=%E7%A8%8B%E7%A7%8B%E8%BF%9E&rft.au=%E5%88%98%E6%9D%B0&rft.au=%E6%9D%A8%E6%B2%BB%E7%BA%AC&rft.au=%E5%BC%A0%E5%A4%A9%E6%84%8F&rft.date=2024&rft.pub=%E6%96%B0%E7%96%86%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BA%A4%E9%80%9A%E4%B8%8E%E7%89%A9%E6%B5%81%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%96%B0%E7%96%86%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830052&rft.issn=1003-8035&rft.volume=35&rft.issue=1&rft.spage=60&rft.epage=71&rft_id=info:doi/10.16031%2Fj.cnki.issn.1003-8035.202302009&rft.externalDocID=zgdzzhyfzxb202401006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgdzzhyfzxb%2Fzgdzzhyfzxb.jpg