基于融合注意力机制LSTM网络的地下水位自适应鲁棒预测

TV211.12; 地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策略.针对目前城市复杂水文预测存在的准确度低、灵敏度低、泛化能力弱等问题,本文提出了一种新的鲁棒自适应水位预测算法.首先,对水文数据进行预处理,解决了数据时间跨度大、噪声多、缺失及异常、非平稳等问题.其次,针对不同输入特征对预测指标的影响,在模型训练阶段提出一种新的空间变量注意机制,可快速识别与水位关联的关键变量,并对输入特征赋予不同的影响权重.然后,针对不同序列长度对预测效果的影响,还设计了自适应时间注意力机制,帮助网络自适应...

Full description

Saved in:
Bibliographic Details
Published in工程科学与技术 Vol. 56; no. 1; pp. 54 - 64
Main Authors 佃松宜, 厉潇滢, 杨丹, 芮胜阳, 郭斌
Format Journal Article
LanguageChinese
Published 四川大学 电气工程学院,四川 成都 610065%成都兴蓉市政设施管理有限公司,四川 成都 610065 2024
Subjects
Online AccessGet full text
ISSN2096-3246
DOI10.15961/j.jsuese.202300315

Cover

Abstract TV211.12; 地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策略.针对目前城市复杂水文预测存在的准确度低、灵敏度低、泛化能力弱等问题,本文提出了一种新的鲁棒自适应水位预测算法.首先,对水文数据进行预处理,解决了数据时间跨度大、噪声多、缺失及异常、非平稳等问题.其次,针对不同输入特征对预测指标的影响,在模型训练阶段提出一种新的空间变量注意机制,可快速识别与水位关联的关键变量,并对输入特征赋予不同的影响权重.然后,针对不同序列长度对预测效果的影响,还设计了自适应时间注意力机制,帮助网络自适应地找出与不同时间序列长度预测指标相关的编码器隐藏状态,以更好地捕捉时间上的依赖关系.在此基础上,以上下文向量作为输入,提出一种融合注意力机制的长短时记忆网络水文预测算法.最后,通过意大利Petrignano水文数据验证了所提算法的有效性,并与GRU、Elman、LSTM、VA-LSTM和S-LSTM等方法进行预测性能比较.结果表明,基于融合注意力机制的LSTM网络在面临大规模、噪点多的复杂数据时有优于其它几种算法的预测效果,表明该算法具有强自适应性和鲁棒性.本文研究结果可以为市政排水策略合理调整、及时控制提供参考.
AbstractList TV211.12; 地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策略.针对目前城市复杂水文预测存在的准确度低、灵敏度低、泛化能力弱等问题,本文提出了一种新的鲁棒自适应水位预测算法.首先,对水文数据进行预处理,解决了数据时间跨度大、噪声多、缺失及异常、非平稳等问题.其次,针对不同输入特征对预测指标的影响,在模型训练阶段提出一种新的空间变量注意机制,可快速识别与水位关联的关键变量,并对输入特征赋予不同的影响权重.然后,针对不同序列长度对预测效果的影响,还设计了自适应时间注意力机制,帮助网络自适应地找出与不同时间序列长度预测指标相关的编码器隐藏状态,以更好地捕捉时间上的依赖关系.在此基础上,以上下文向量作为输入,提出一种融合注意力机制的长短时记忆网络水文预测算法.最后,通过意大利Petrignano水文数据验证了所提算法的有效性,并与GRU、Elman、LSTM、VA-LSTM和S-LSTM等方法进行预测性能比较.结果表明,基于融合注意力机制的LSTM网络在面临大规模、噪点多的复杂数据时有优于其它几种算法的预测效果,表明该算法具有强自适应性和鲁棒性.本文研究结果可以为市政排水策略合理调整、及时控制提供参考.
Abstract_FL Groundwater level is an important factor affecting groundwater infiltration of sewage pipe network in dry weather.Accurate prediction of groundwater level can effectively improve the accuracy of groundwater infiltration estimation in dry weather,and assist in optimizing pipe net-work disease control and maintenance strategies.Aiming at the problems of low accuracy,low sensitivity,and weak generalization ability in the current urban complex hydrological prediction,a new robust adaptive water level prediction algorithm was proposed in this paper.First,a prior processing was carried out on the hydrological data,which solved the problems of large time span,high noise,missing and abnormal,and non-sta-tionary data.Secondly,in view of the influence difference of input features on predictive indicators,a new spatial variable attention mechanism was proposed in model training stage,which can quickly identify key variables associated with water levels and assign different influence weights to input features.Furthermore,in view of the influence difference of various sequence lengths on the prediction effect,an adaptive temporal atten-tion mechanism was also designed to adaptively find out the hidden state of the encoder related to the predictors of different sequence lengths,so as to capture time dependencies.On this basis,with the context vector as the input,an LSTM hydrological prediction algorithm integrating atten-tion mechanism was proposed.Finally,the effectiveness of the proposed algorithm was verified by the hydrological data of Petrignano,Italy.The prediction performance was compared with GRU,Elman,LSTM,VA-LSTM and S-LSTM methods.The results showed that the proposed STA-LSTM network based on the fusion attention mechanism has a better prediction effect than other algorithms when faced with complex,large-scale,and noisy data,indicating the strong adaptability and robustness of the algorithm.The research results of the paper provide a reference for the reasonable adjustment and timely control of municipal drainage strategies.
Author 厉潇滢
杨丹
郭斌
佃松宜
芮胜阳
AuthorAffiliation 四川大学 电气工程学院,四川 成都 610065%成都兴蓉市政设施管理有限公司,四川 成都 610065
AuthorAffiliation_xml – name: 四川大学 电气工程学院,四川 成都 610065%成都兴蓉市政设施管理有限公司,四川 成都 610065
Author_FL RUI Shengyang
YANG Dan
DIAN Songyi
GUO Bin
LI Xiaoying
Author_FL_xml – sequence: 1
  fullname: DIAN Songyi
– sequence: 2
  fullname: LI Xiaoying
– sequence: 3
  fullname: YANG Dan
– sequence: 4
  fullname: RUI Shengyang
– sequence: 5
  fullname: GUO Bin
Author_xml – sequence: 1
  fullname: 佃松宜
– sequence: 2
  fullname: 厉潇滢
– sequence: 3
  fullname: 杨丹
– sequence: 4
  fullname: 芮胜阳
– sequence: 5
  fullname: 郭斌
BookMark eNotj8tKw0AUQGdRwVr7Bf6CiXdmMpNkKcVHIeLCug6TSVKskoJDMUuVgMVSX7jSoKAbcVV8IZH-TZO2f2FBV2d3DmcBlaJ2FCC0hEHHzOZ4paW3VCdQgU6AUACKWQmVCdhco8Tg86iq1J4HlBuUMc7KqJ4_ZqPsYvLQz6-6xftLkVzm5_dFmuXdL2ensTUeXo9_0vFdkqeD0XevGHyMhv3J2ev0-DTPbqdvJ8XzzfQpKT57i2guFAcqqP6zgnbX1xq1Tc3Z3qjXVh1NYTC5hsEQzJLU8z3GRUg9Q1jYtyUDQzKTCWJJEESaNPTADn1qcV8EpiAYQhOY6dMKWv7zHokoFFHTbbU7h9Gs6Crpx7HnNuV-PLs3AANw-gu3omvw
ClassificationCodes TV211.12
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.15961/j.jsuese.202300315
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Adaptive Robust Prediction of Groundwater Level Based on Fusion Attention Mechanism LSTM Network
EndPage 64
ExternalDocumentID scdxxb_gckx202401006
GrantInformation_xml – fundername: 国家重点研发计划
  funderid: (2020YFB1709705)
GroupedDBID -0C
-SC
-S~
2B.
2RA
4A8
5VR
92I
92M
93N
9D9
9DC
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CQIGP
GROUPED_DOAJ
PB1
PB9
PSX
Q--
R-C
RT3
T8S
TCJ
U1F
U5C
ID FETCH-LOGICAL-s1076-104a58c3bdb56af3b4a81d9c504c575a28c0a2c73fb09fd386dae7a210f7057d3
ISSN 2096-3246
IngestDate Thu May 29 03:53:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords LSTM网络
LSTM
spatial-temporal attention mechanism
自适应预测
robust prediction
鲁棒预测
时间与空间注意力机制
groundwater level prediction
地下水位预测
adaptive prediction
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1076-104a58c3bdb56af3b4a81d9c504c575a28c0a2c73fb09fd386dae7a210f7057d3
PageCount 11
ParticipantIDs wanfang_journals_scdxxb_gckx202401006
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 工程科学与技术
PublicationTitle_FL Advanced Engineering Sciences
PublicationYear 2024
Publisher 四川大学 电气工程学院,四川 成都 610065%成都兴蓉市政设施管理有限公司,四川 成都 610065
Publisher_xml – name: 四川大学 电气工程学院,四川 成都 610065%成都兴蓉市政设施管理有限公司,四川 成都 610065
SSID ssib036435565
ssib050593459
ssib041261190
ssib030194745
ssib051371919
ssj0003313526
ssib027967859
Score 2.384715
Snippet TV211.12; 地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策...
SourceID wanfang
SourceType Aggregation Database
StartPage 54
Title 基于融合注意力机制LSTM网络的地下水位自适应鲁棒预测
URI https://d.wanfangdata.com.cn/periodical/scdxxb-gckx202401006
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-3246
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0003313526
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-lXryIouI3PTinsprMZJKZ46SbpYr1Ygu9SJkkm4rCCraF0pNKwWKpX3jSoqAX8VT8Qlb633S37X_hey_Zzcr20HoJs_PxPn5vyLw3O3njOFczP7Vpzr0ab2oFAYqVNQvLcs3NcpsEYS6Fxo-Tp24HkzP-zVk5OzJ6d-DU0tJici1dOfC7kv-xKtSBXfEr2SNYtk8UKqAM9oUnWBieh7IxiyXTDRYZFvv4VDGLFdMxU3VqcplSLA5YJJihggLPsYFNyjAdYY2eoOESe0bBrTvTUywOWVRn2qNChD2goA0ORqIwwCV-iikiAT8jn2rqxBjqQ2aAqMZjFIrjKOChfayJOPiuOMoIpjnWGE6UgQ4IEQ06yzQQSEkUwBTsoBCSbJKZOjNBT5KY1DPIsdDK9I8s90QT1FJnUUyjY-hVdZFIQmmSo44KYCEC4aouNBhxJI6RrloUcjYEPnBBwDTT0EUM7qnwajeVcIzIAqShJnMZH3XrKTZOqPuISoGx9g_Cow8DcCQs-cQw9XECR-GEQKMIUHEcHFrwCxmXw22EhiSjQr0gWCShzAkFEKqBTaBxRLhrAg2FipmheYNTLygtgcNJOmRBlA3JCDMRaB5N3mrd4hAV18BPDwYX2SJ7_D8vk2LFLFKIl75XkdB-aFWXOiiW9ft4ISUmt4XAGa8nqZyY_tHShTRbXk7m5tMHy2hZ16OE_Mc4btcN7LjAcsNDDZ5a5c3DUqf9gcsfBDjrUlaHAHyPB55X_aks8TbMgVRM0hOhp8vsiOgICuHh7RN4vWUPkjLvGSp0fVgd-nCwldvW_ICPO33SOVEGp2OmeNOcckZW7p12bnQ-tnfaL_Y-bHRerXW_f-muvuw8f9_dbHfWfuH7Ynf79e6fzd13q53NrZ3f692tHzvbG3vPvu4_ftppv93_9qT7-c3-p9Xuz_Uzzkwjnp6YrJUXsNQWPDcMwEXzrVSpSLJEBjYXiW8hvNWpdP0UwjzLVepanoYiT1ydZ0IFmW2GlntuHkIcmImzzmjrYat5zhlTmYJILg3BH7aYSMGqMM8sFxk4DU2h8_MOK1WfK1-wC3MHmfLCIftddI5judgsveSMLj5aal6G8GExuUKT4C8NBM_c
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%9E%8D%E5%90%88%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6LSTM%E7%BD%91%E7%BB%9C%E7%9A%84%E5%9C%B0%E4%B8%8B%E6%B0%B4%E4%BD%8D%E8%87%AA%E9%80%82%E5%BA%94%E9%B2%81%E6%A3%92%E9%A2%84%E6%B5%8B&rft.jtitle=%E5%B7%A5%E7%A8%8B%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF&rft.au=%E4%BD%83%E6%9D%BE%E5%AE%9C&rft.au=%E5%8E%89%E6%BD%87%E6%BB%A2&rft.au=%E6%9D%A8%E4%B8%B9&rft.au=%E8%8A%AE%E8%83%9C%E9%98%B3&rft.date=2024&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%9B%9B%E5%B7%9D+%E6%88%90%E9%83%BD+610065%25%E6%88%90%E9%83%BD%E5%85%B4%E8%93%89%E5%B8%82%E6%94%BF%E8%AE%BE%E6%96%BD%E7%AE%A1%E7%90%86%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%9B%9B%E5%B7%9D+%E6%88%90%E9%83%BD+610065&rft.issn=2096-3246&rft.volume=56&rft.issue=1&rft.spage=54&rft.epage=64&rft_id=info:doi/10.15961%2Fj.jsuese.202300315&rft.externalDocID=scdxxb_gckx202401006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fscdxxb-gckx%2Fscdxxb-gckx.jpg