基于图表征和双重注意力机制的跨被试ERP检测

TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory net-work,LSTM)形成CNN-LSTM基础框架,同时嵌入双重注意力机制(即选择性内核卷积和自注意力机制)以充分提取不同被试脑电信号的时空特征,从而提高跨被试场景下的ERP检测精度.在基于快速序列视...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与应用 Vol. 59; no. 11; pp. 160 - 167
Main Authors 相晓嘉, 兰珍, 闫超, 李子杏, 唐邓清, 周晗
Format Journal Article
LanguageChinese
Published 国防科技大学智能科学学院,长沙 410073 01.06.2023
Subjects
Online AccessGet full text
ISSN1002-8331
DOI10.3778/j.issn.1002-8331.2202-0311

Cover

Abstract TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory net-work,LSTM)形成CNN-LSTM基础框架,同时嵌入双重注意力机制(即选择性内核卷积和自注意力机制)以充分提取不同被试脑电信号的时空特征,从而提高跨被试场景下的ERP检测精度.在基于快速序列视觉呈现范式的大规模基准数据集上的实验结果表明,与现有的7种ERP检测方法相比,所提方法在跨被试场景下具有显著的优越性.
AbstractList TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory net-work,LSTM)形成CNN-LSTM基础框架,同时嵌入双重注意力机制(即选择性内核卷积和自注意力机制)以充分提取不同被试脑电信号的时空特征,从而提高跨被试场景下的ERP检测精度.在基于快速序列视觉呈现范式的大规模基准数据集上的实验结果表明,与现有的7种ERP检测方法相比,所提方法在跨被试场景下具有显著的优越性.
Author 闫超
李子杏
唐邓清
相晓嘉
周晗
兰珍
AuthorAffiliation 国防科技大学智能科学学院,长沙 410073
AuthorAffiliation_xml – name: 国防科技大学智能科学学院,长沙 410073
Author_FL LAN Zhen
TANG Dengqing
XIANG Xiaojia
LI Zixing
YAN Chao
ZHOU Han
Author_FL_xml – sequence: 1
  fullname: XIANG Xiaojia
– sequence: 2
  fullname: LAN Zhen
– sequence: 3
  fullname: YAN Chao
– sequence: 4
  fullname: LI Zixing
– sequence: 5
  fullname: TANG Dengqing
– sequence: 6
  fullname: ZHOU Han
Author_xml – sequence: 1
  fullname: 相晓嘉
– sequence: 2
  fullname: 兰珍
– sequence: 3
  fullname: 闫超
– sequence: 4
  fullname: 李子杏
– sequence: 5
  fullname: 唐邓清
– sequence: 6
  fullname: 周晗
BookMark eNrjYmDJy89LZWBQMjTQMzY3t9DP0sssLs7TMzQwMNK1MDY21DMyArIMjA0NWRg44aIcDLzFxZlJBqaGxuam5saWnAw2T-fverKr7-nsfS8Wrni6r_HppJ6n_T0v23ufbV7xrKX_adfsZ3N2Pe3Y9nxWy4vtK14sWv1i_VTXoIBnixuebe3mYWBNS8wpTuWF0twMoW6uIc4euj7-7p7Ojj66xYYGZpa6KakpaamGxokGZoapyabmZinmFinJqclmRikGJobJFqlmyaYmpsZmaRYWaQZJlqnGBqapZimGKYnJpqbmlokmZsbcDJoQc8sT89IS89Ljs_JLi_KANsZnFWelJ1dWVgI9C_SqgaGlMQCNW2Ma
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1002-8331.2202-0311
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Cross-Subject ERP Detection Based on Graph and Dual Attention Mechanism
EndPage 167
ExternalDocumentID jsjgcyyy202311019
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1069-dedfe13a061ec576d78dcec62d041c8e6c54536f88f0b9e305e6d1dac5579a463
ISSN 1002-8331
IngestDate Thu May 29 04:10:54 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 11
Keywords 图表征
注意力机制
卷积循环模型
脑电图(EEG)
相关电位(ERP)检测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1069-dedfe13a061ec576d78dcec62d041c8e6c54536f88f0b9e305e6d1dac5579a463
PageCount 8
ParticipantIDs wanfang_journals_jsjgcyyy202311019
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机工程与应用
PublicationTitle_FL Computer Engineering and Applications
PublicationYear 2023
Publisher 国防科技大学智能科学学院,长沙 410073
Publisher_xml – name: 国防科技大学智能科学学院,长沙 410073
SSID ssib051375739
ssib001102935
ssj0000561668
ssib023646291
ssib057620132
Score 1.9416826
Snippet TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural...
SourceID wanfang
SourceType Aggregation Database
StartPage 160
Title 基于图表征和双重注意力机制的跨被试ERP检测
URI https://d.wanfangdata.com.cn/periodical/jsjgcyyy202311019
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsInJRQ_iE98EsU-ycbt7ph_gZSY7SxAjognkFnZneiM5rGCSQ3JSCCgaDShejCDqJeDBg6iQQ77GWde_sKqnd2fiA6KXobe6qroe01PVS3c1IZdSyJE5TKJaS1lYoABSTRub1SyTJlSqnSqO552nb8ip2eDaXDg3cuBFZdfSynJ7Il3747mS__EqwMCveEr2Hzw7ZAoAaIN_4Qkehue-fEyTkJomjSOaBPjUiYPENIaGphGjkUYI_NTMdXGqJ7Ghm65hqFZUN2giaSwcsqQ6wF7EiZAVQMykGwIgmsaSJoqaCNFgiFg5KhiL0yh2jSY1YXLrJhJGAjdSIHOgjat5sMNMUELgBg2j9gyEbEPXpYHQaae9doBgAidDAL2D98UBYsRCNoYa4dQFIlOigBBAX0dc1L9R9hgUoJAfFCxu9yl6gFvDjxw1qKkPIM3q3yVclNu63As-cEPDsQam3CkDMjJn4sjZBVgGCCx4R9LLjiYAwYUjH1INcYYNg8hgd-4caUC1prM1B_jlAPeliErIcTFpcG7NxyRfJd3PPVaJMKy4fsEnK6y4y-TXOCiU0i4O4ggTwxEmOMf95sIz3FtnfHFpcSFdXV1Fo0FOiKV0x7iChHSUjEWN6eu3yywbklJTZtl4BYHkZcmlkAkVqrLYLKxoed0XCPUl9yWT_pCql6woB4xiX_m70O5cXbfT6i5UUsCZI-SwX7uNR8VEPEpG1u4cI4cqFT2Pk6v5m51vO8_yrd3-2-1890H-fCPf3Pjx8Gnv03ZvfTN_vNV7vZM_-vL91Xr_63b_3Yf-x5cwWXrv7_c-PzlBZpvJzORUzV9QUltidWlqmc06lokW5MQ2BTUzpbPUppJn9YCl2soU1idCdrTu1NvGQmi1MmNZKw1DZVqBFCfJaPdu154i47jBAIzCWWYZ5IumlXXaot3REHJTDSY9TS563ef9B2hp_jePndkP0llysJwX58jo8r0Vex4S6-X2Be_onwTYmdc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%BE%E8%A1%A8%E5%BE%81%E5%92%8C%E5%8F%8C%E9%87%8D%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E7%9A%84%E8%B7%A8%E8%A2%AB%E8%AF%95ERP%E6%A3%80%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E7%9B%B8%E6%99%93%E5%98%89&rft.au=%E5%85%B0%E7%8F%8D&rft.au=%E9%97%AB%E8%B6%85&rft.au=%E6%9D%8E%E5%AD%90%E6%9D%8F&rft.date=2023-06-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%99%BA%E8%83%BD%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%B2%99+410073&rft.issn=1002-8331&rft.volume=59&rft.issue=11&rft.spage=160&rft.epage=167&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2202-0311&rft.externalDocID=jsjgcyyy202311019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg