基于图表征和双重注意力机制的跨被试ERP检测
TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory net-work,LSTM)形成CNN-LSTM基础框架,同时嵌入双重注意力机制(即选择性内核卷积和自注意力机制)以充分提取不同被试脑电信号的时空特征,从而提高跨被试场景下的ERP检测精度.在基于快速序列视...
Saved in:
Published in | 计算机工程与应用 Vol. 59; no. 11; pp. 160 - 167 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
国防科技大学智能科学学院,长沙 410073
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-8331 |
DOI | 10.3778/j.issn.1002-8331.2202-0311 |
Cover
Abstract | TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory net-work,LSTM)形成CNN-LSTM基础框架,同时嵌入双重注意力机制(即选择性内核卷积和自注意力机制)以充分提取不同被试脑电信号的时空特征,从而提高跨被试场景下的ERP检测精度.在基于快速序列视觉呈现范式的大规模基准数据集上的实验结果表明,与现有的7种ERP检测方法相比,所提方法在跨被试场景下具有显著的优越性. |
---|---|
AbstractList | TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory net-work,LSTM)形成CNN-LSTM基础框架,同时嵌入双重注意力机制(即选择性内核卷积和自注意力机制)以充分提取不同被试脑电信号的时空特征,从而提高跨被试场景下的ERP检测精度.在基于快速序列视觉呈现范式的大规模基准数据集上的实验结果表明,与现有的7种ERP检测方法相比,所提方法在跨被试场景下具有显著的优越性. |
Author | 闫超 李子杏 唐邓清 相晓嘉 周晗 兰珍 |
AuthorAffiliation | 国防科技大学智能科学学院,长沙 410073 |
AuthorAffiliation_xml | – name: 国防科技大学智能科学学院,长沙 410073 |
Author_FL | LAN Zhen TANG Dengqing XIANG Xiaojia LI Zixing YAN Chao ZHOU Han |
Author_FL_xml | – sequence: 1 fullname: XIANG Xiaojia – sequence: 2 fullname: LAN Zhen – sequence: 3 fullname: YAN Chao – sequence: 4 fullname: LI Zixing – sequence: 5 fullname: TANG Dengqing – sequence: 6 fullname: ZHOU Han |
Author_xml | – sequence: 1 fullname: 相晓嘉 – sequence: 2 fullname: 兰珍 – sequence: 3 fullname: 闫超 – sequence: 4 fullname: 李子杏 – sequence: 5 fullname: 唐邓清 – sequence: 6 fullname: 周晗 |
BookMark | eNrjYmDJy89LZWBQMjTQMzY3t9DP0sssLs7TMzQwMNK1MDY21DMyArIMjA0NWRg44aIcDLzFxZlJBqaGxuam5saWnAw2T-fverKr7-nsfS8Wrni6r_HppJ6n_T0v23ufbV7xrKX_adfsZ3N2Pe3Y9nxWy4vtK14sWv1i_VTXoIBnixuebe3mYWBNS8wpTuWF0twMoW6uIc4euj7-7p7Ojj66xYYGZpa6KakpaamGxokGZoapyabmZinmFinJqclmRikGJobJFqlmyaYmpsZmaRYWaQZJlqnGBqapZimGKYnJpqbmlokmZsbcDJoQc8sT89IS89Ljs_JLi_KANsZnFWelJ1dWVgI9C_SqgaGlMQCNW2Ma |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3778/j.issn.1002-8331.2202-0311 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Cross-Subject ERP Detection Based on Graph and Dual Attention Mechanism |
EndPage | 167 |
ExternalDocumentID | jsjgcyyy202311019 |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGT U1G U5S |
ID | FETCH-LOGICAL-s1069-dedfe13a061ec576d78dcec62d041c8e6c54536f88f0b9e305e6d1dac5579a463 |
ISSN | 1002-8331 |
IngestDate | Thu May 29 04:10:54 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 11 |
Keywords | 图表征 注意力机制 卷积循环模型 脑电图(EEG) 相关电位(ERP)检测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1069-dedfe13a061ec576d78dcec62d041c8e6c54536f88f0b9e305e6d1dac5579a463 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_jsjgcyyy202311019 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 计算机工程与应用 |
PublicationTitle_FL | Computer Engineering and Applications |
PublicationYear | 2023 |
Publisher | 国防科技大学智能科学学院,长沙 410073 |
Publisher_xml | – name: 国防科技大学智能科学学院,长沙 410073 |
SSID | ssib051375739 ssib001102935 ssj0000561668 ssib023646291 ssib057620132 |
Score | 1.9416826 |
Snippet | TP391; 针对事件相关电位(event-related potential,ERP)在跨被试场景下检测精度不高的问题,提出了一 种基于图表征和双重注意力机制的卷积循环神经网络模型.该模型采用不依赖于被试和任务的图来表征脑电信号中的空间信息,并级联卷积神经网络(convolutional neural... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 160 |
Title | 基于图表征和双重注意力机制的跨被试ERP检测 |
URI | https://d.wanfangdata.com.cn/periodical/jsjgcyyy202311019 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsInJRQ_iE98EsU-ycbt7ph_gZSY7SxAjognkFnZneiM5rGCSQ3JSCCgaDShejCDqJeDBg6iQQ77GWde_sKqnd2fiA6KXobe6qroe01PVS3c1IZdSyJE5TKJaS1lYoABSTRub1SyTJlSqnSqO552nb8ip2eDaXDg3cuBFZdfSynJ7Il3747mS__EqwMCveEr2Hzw7ZAoAaIN_4Qkehue-fEyTkJomjSOaBPjUiYPENIaGphGjkUYI_NTMdXGqJ7Ghm65hqFZUN2giaSwcsqQ6wF7EiZAVQMykGwIgmsaSJoqaCNFgiFg5KhiL0yh2jSY1YXLrJhJGAjdSIHOgjat5sMNMUELgBg2j9gyEbEPXpYHQaae9doBgAidDAL2D98UBYsRCNoYa4dQFIlOigBBAX0dc1L9R9hgUoJAfFCxu9yl6gFvDjxw1qKkPIM3q3yVclNu63As-cEPDsQam3CkDMjJn4sjZBVgGCCx4R9LLjiYAwYUjH1INcYYNg8hgd-4caUC1prM1B_jlAPeliErIcTFpcG7NxyRfJd3PPVaJMKy4fsEnK6y4y-TXOCiU0i4O4ggTwxEmOMf95sIz3FtnfHFpcSFdXV1Fo0FOiKV0x7iChHSUjEWN6eu3yywbklJTZtl4BYHkZcmlkAkVqrLYLKxoed0XCPUl9yWT_pCql6woB4xiX_m70O5cXbfT6i5UUsCZI-SwX7uNR8VEPEpG1u4cI4cqFT2Pk6v5m51vO8_yrd3-2-1890H-fCPf3Pjx8Gnv03ZvfTN_vNV7vZM_-vL91Xr_63b_3Yf-x5cwWXrv7_c-PzlBZpvJzORUzV9QUltidWlqmc06lokW5MQ2BTUzpbPUppJn9YCl2soU1idCdrTu1NvGQmi1MmNZKw1DZVqBFCfJaPdu154i47jBAIzCWWYZ5IumlXXaot3REHJTDSY9TS563ef9B2hp_jePndkP0llysJwX58jo8r0Vex4S6-X2Be_onwTYmdc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%BE%E8%A1%A8%E5%BE%81%E5%92%8C%E5%8F%8C%E9%87%8D%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E7%9A%84%E8%B7%A8%E8%A2%AB%E8%AF%95ERP%E6%A3%80%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E7%9B%B8%E6%99%93%E5%98%89&rft.au=%E5%85%B0%E7%8F%8D&rft.au=%E9%97%AB%E8%B6%85&rft.au=%E6%9D%8E%E5%AD%90%E6%9D%8F&rft.date=2023-06-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%99%BA%E8%83%BD%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%B2%99+410073&rft.issn=1002-8331&rft.volume=59&rft.issue=11&rft.spage=160&rft.epage=167&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2202-0311&rft.externalDocID=jsjgcyyy202311019 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg |