基于注意力模块的移动设备多场景持续身份认证

TP391; 针对用户与移动设备交互时会产生场景变化,现有工作中只能采集特定的单一场景特征,无法实现多场景转换认证,并且身份认证准确率较低的问题,提出了一种基于移动模式的、注意力模块和卷积神经网络融合(CNN-SACA)的多场景持续认证方案.在不限使用场景和操作的情况下,提取用户与移动设备交互时的移动模式(move-ment patterns,MP)特征,捕捉在动态和静态场景下产生的手部微运动,从而实现多场景的身份认证.设计并使用了一个包括五层卷积层结构的卷积神经网络,在第一层卷积后按序通过改进的空间和通道注意力子模块,再在多层卷积后进行反序分配权重,从两个维度来对通过卷积后所表征的MP特征分...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与应用 Vol. 60; no. 3; pp. 280 - 291
Main Authors 金瑜瑶, 张晓梅, 王亚杰
Format Journal Article
LanguageChinese
Published 上海工程技术大学 电子电气工程学院,上海 201620 01.02.2024
Subjects
Online AccessGet full text
ISSN1002-8331
DOI10.3778/j.issn.1002-8331.2209-0204

Cover

Abstract TP391; 针对用户与移动设备交互时会产生场景变化,现有工作中只能采集特定的单一场景特征,无法实现多场景转换认证,并且身份认证准确率较低的问题,提出了一种基于移动模式的、注意力模块和卷积神经网络融合(CNN-SACA)的多场景持续认证方案.在不限使用场景和操作的情况下,提取用户与移动设备交互时的移动模式(move-ment patterns,MP)特征,捕捉在动态和静态场景下产生的手部微运动,从而实现多场景的身份认证.设计并使用了一个包括五层卷积层结构的卷积神经网络,在第一层卷积后按序通过改进的空间和通道注意力子模块,再在多层卷积后进行反序分配权重,从两个维度来对通过卷积后所表征的MP特征分配双重注意力权重,增强关键特征表达.利用公开数据集验证所提方案在多场景身份认证方面的有效性和可行性.实验结果表明,所提出的基于移动模式的深度学习模型可以较好地解决身份认证场景单一的局限性,多场景的身份认证的准确率达到99.6%;同时,所提出的CNN-SACA模型与单独的CNN模型相比准确率提高了1.5个百分点,有效改善多场景下的移动设备身份认证能力.
AbstractList TP391; 针对用户与移动设备交互时会产生场景变化,现有工作中只能采集特定的单一场景特征,无法实现多场景转换认证,并且身份认证准确率较低的问题,提出了一种基于移动模式的、注意力模块和卷积神经网络融合(CNN-SACA)的多场景持续认证方案.在不限使用场景和操作的情况下,提取用户与移动设备交互时的移动模式(move-ment patterns,MP)特征,捕捉在动态和静态场景下产生的手部微运动,从而实现多场景的身份认证.设计并使用了一个包括五层卷积层结构的卷积神经网络,在第一层卷积后按序通过改进的空间和通道注意力子模块,再在多层卷积后进行反序分配权重,从两个维度来对通过卷积后所表征的MP特征分配双重注意力权重,增强关键特征表达.利用公开数据集验证所提方案在多场景身份认证方面的有效性和可行性.实验结果表明,所提出的基于移动模式的深度学习模型可以较好地解决身份认证场景单一的局限性,多场景的身份认证的准确率达到99.6%;同时,所提出的CNN-SACA模型与单独的CNN模型相比准确率提高了1.5个百分点,有效改善多场景下的移动设备身份认证能力.
Abstract_FL In view of the fact that the user may change the scene when interacting with the mobile device,the existing works have limitations on the specific single scene when collecting features and low authentication accuracies,and cannot achieve multi-scene conversion authentication.To overcome these issues,a movement patterns based multi-scene continu-ous authentication scheme,which combines the attention module with the convolutional neural network(CNN-SACA)is proposed.Under unrestricted usage scenarios and operations,the movement patterns(MP)features are extracted when the user interacts with the mobile device and then hand micro-motion can be captured in dynamic and static scenes,by which the multi-scene authentication is realized.A convolutional neural network including 5 convolutional layers is designed.After the convolution of the first layer,the improved spatial and channel attention sub modules are sequentially passed,and then the weights are inversely distributed after the convolution of the multiple layers to enhance the key feature repre-sentation.MP features characterized by the convolution are assigned double attention weights from two dimensions.A public data set is used to verify the effectiveness and feasibility of the proposed method in multi-scene authentication.The experimental results show that the proposed deep learning model based on movement patterns can get over the limitations caused by the single authentication scenario,and achieve accuracy of 99.6%.Meanwhile,comparing with the CNN model alone,the accuracy of the proposed CNN-SACA model is improved by 1.5 percentage points,which effectively improves the authentication capability of mobile devices in multiple scenarios.
Author 金瑜瑶
王亚杰
张晓梅
AuthorAffiliation 上海工程技术大学 电子电气工程学院,上海 201620
AuthorAffiliation_xml – name: 上海工程技术大学 电子电气工程学院,上海 201620
Author_FL JIN Yuyao
ZHANG Xiaomei
WANG Yajie
Author_FL_xml – sequence: 1
  fullname: JIN Yuyao
– sequence: 2
  fullname: ZHANG Xiaomei
– sequence: 3
  fullname: WANG Yajie
Author_xml – sequence: 1
  fullname: 金瑜瑶
– sequence: 2
  fullname: 张晓梅
– sequence: 3
  fullname: 王亚杰
BookMark eNo9jj1Lw0Ach2-oYK39Em4Oif-7y8vdJFJ8g4KLzuUul5QGScFDJGOhIBTRUayKCAUDYju4Jein6SX5GBYUpx88w_P8NlAjGSYhQlsYbOr7bCe2B1onNgYgFqMU24QAt4CA00DNf7qO2loPJLiY-q5PeRPtmpd8md-Wn1k5vjOTxzJ7Nc_31XRcvRVmktXzbzO7NrOpecrLh0V5M6qKjzp_XxZf9XxWL0abaC0S5zps_20LnR3sn3aOrO7J4XFnr2tpDB63pJQkksBC6ggaUuF6CrATKKo8xh2fcCaILxwRKi6liiKJQbHVeeUFoWARoy20_eu9Ekkkkn4vHl5eJKtiL9ZxP0jTlABxgALh9AfVZGfH
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1002-8331.2209-0204
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Multi-Scene Continuous Authentication Based on Attention Module for Mobile Devices
EndPage 291
ExternalDocumentID jsjgcyyy202403029
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (61802252)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1069-bbb2fb08e34a3e3a56d014cd3d68947298a27a4aed9bbdffb10d8204d6cea8f83
ISSN 1002-8331
IngestDate Thu May 29 04:10:54 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords 持续身份认证
mobile device
卷积神经网络
多场景
convolutional neural network
attention module
注意力模块
multi-scene
移动设备
continuous authentication
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1069-bbb2fb08e34a3e3a56d014cd3d68947298a27a4aed9bbdffb10d8204d6cea8f83
PageCount 12
ParticipantIDs wanfang_journals_jsjgcyyy202403029
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机工程与应用
PublicationTitle_FL Computer Engineering and Applications
PublicationYear 2024
Publisher 上海工程技术大学 电子电气工程学院,上海 201620
Publisher_xml – name: 上海工程技术大学 电子电气工程学院,上海 201620
SSID ssib051375739
ssib001102935
ssj0000561668
ssib023646291
ssib057620132
Score 1.9760306
Snippet TP391; 针对用户与移动设备交互时会产生场景变化,现有工作中只能采集特定的单一场景特征,无法实现多场景转换认证,并且身份认证准确率较低的问题,提出了一种基于移动模式...
SourceID wanfang
SourceType Aggregation Database
StartPage 280
Title 基于注意力模块的移动设备多场景持续身份认证
URI https://d.wanfangdata.com.cn/periodical/jsjgcyyy202403029
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1002-8331
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620132
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMnjogfxiW-C2Kewsadnpqf7JD27swQxXkwgtzBPJYcVTHJIboGAEESPYlRECBgQk4N42aBfk9nsZ1jV05sdkgjRS1PUVNeja3qqZne6ipD7RZoHTp7JRspS3vCkzxvKL_wGkznc01JBloBnh2eeiOk579G8Pz8y-rP21dLKcjKVrp16ruR_vAo48Cuekv0Hzx4xBQTA4F8YwcMwnsnHNPKpatNQ08jDUUY0EjR0qZYISMgT20gjNVUhYgCvHTOrRVVAo4AqjWQA6ICGoSXG6UAZ0TBCjAY-gQWAHqc3jVBBlaK6bWQ1ISdFPsBEt3A6EOjQKBbSsGUZAgcE2rTqoDJIiwdXDQcAUDcxkOLTEJC-uSSprHhKY6yPBMroD6M--iyXRgpVVoYfjMCpAkIxJIHJTaqZNUO5ZoE4rXr7VCQBSrEStbFd4NKFrP5jCfcG31fb23ugoCEPjfqnGCGQQDJrqG7bBdbVSreoFpPWLmBRoRSrYYA1M7afZG3n4yqggzjso5M6TUJSJjirRSUTtgZH22zYEqy2Pd16DKpaY9l0hlfN0I5HSjcIpImUKGDqSMAU5_hnGa9aQh-rRL64tPgsXV1dxYWF2MDVKBnngRB8jIzr1szjp8M8HNJWNczDsUmB4MOiTL7jBn4wLEcL77yc2RKitii_cIQ9xmo1qwoGo9oP_q60OXnXKeLOs1qSOHuRXLBvdxO62qqXyMja88vkfK3m5xXysPzcPei-6f3Y6W28LTc_9Ha-lJ_eHW5tHH7dLzd3-ru_y-1X5fZW-bHbe7_Xe71-uP-93_12sP-rv7vd31u_Suba0WxzumG7mDSWHCZUI0kSXiTw7HO92M3d2BcZc7w0czMhlQfvtjLmQezFeaaSJCuKxGEZpOVeJtI8loV0r5GxzotOfp1MZF4CM1iMFZY8IfzEy3JROKkbwINY-tkNcs-av2CfUksLJ5x28yxEt8i54fa5TcaWX67kdyD7Xk7uWl__AX-7pMg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%A8%A1%E5%9D%97%E7%9A%84%E7%A7%BB%E5%8A%A8%E8%AE%BE%E5%A4%87%E5%A4%9A%E5%9C%BA%E6%99%AF%E6%8C%81%E7%BB%AD%E8%BA%AB%E4%BB%BD%E8%AE%A4%E8%AF%81&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E9%87%91%E7%91%9C%E7%91%B6&rft.au=%E5%BC%A0%E6%99%93%E6%A2%85&rft.au=%E7%8E%8B%E4%BA%9A%E6%9D%B0&rft.date=2024-02-01&rft.pub=%E4%B8%8A%E6%B5%B7%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6+%E7%94%B5%E5%AD%90%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201620&rft.issn=1002-8331&rft.volume=60&rft.issue=3&rft.spage=280&rft.epage=291&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2209-0204&rft.externalDocID=jsjgcyyy202403029
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg