融合组织P系统的自适应t分布蜣螂算法

TP301.6; 针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算法(adaptive t-distribution DBO with tissue-like membrane,MC-TDBO).设计自适应惯性因子改变繁育蜣螂和小偷蜣螂的步长,动态调节蜣螂个体的探索幅度,协调并优化算法的全局搜索和局部开发能力;引入鲸鱼算法改进觅食行为,促使种群向最优位置靠近,提高算法的计算精度;结合成功率和自适应t分布,提升算法跳出局部最优的能力;引入组织P系统与改进后的DBO算法结...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与应用 Vol. 61; no. 4; pp. 99 - 113
Main Authors 许家昌, 江琳, 苏树智
Format Journal Article
LanguageChinese
Published 安徽理工大学 计算机科学与工程学院,安徽 淮南 232001%安徽理工大学 计算机科学与工程学院,安徽 淮南 232001 15.02.2025
安徽理工大学第一附属医院(淮南市第一人民医院),安徽 淮南 232001
Subjects
Online AccessGet full text
ISSN1002-8331
DOI10.3778/j.issn.1002-8331.2405-0018

Cover

Abstract TP301.6; 针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算法(adaptive t-distribution DBO with tissue-like membrane,MC-TDBO).设计自适应惯性因子改变繁育蜣螂和小偷蜣螂的步长,动态调节蜣螂个体的探索幅度,协调并优化算法的全局搜索和局部开发能力;引入鲸鱼算法改进觅食行为,促使种群向最优位置靠近,提高算法的计算精度;结合成功率和自适应t分布,提升算法跳出局部最优的能力;引入组织P系统与改进后的DBO算法结合,增强算法收敛效率.采用14个基准函数进行仿真测试,实验结果表明,MC-TDBO算法和原始DBO算法等四种算法相比,寻优速度、求解精度和稳定性均得到了显著提升.将MC-TDBO算法在阈值分割中进行应用测试,进一步验证其有效性.
AbstractList TP301.6; 针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算法(adaptive t-distribution DBO with tissue-like membrane,MC-TDBO).设计自适应惯性因子改变繁育蜣螂和小偷蜣螂的步长,动态调节蜣螂个体的探索幅度,协调并优化算法的全局搜索和局部开发能力;引入鲸鱼算法改进觅食行为,促使种群向最优位置靠近,提高算法的计算精度;结合成功率和自适应t分布,提升算法跳出局部最优的能力;引入组织P系统与改进后的DBO算法结合,增强算法收敛效率.采用14个基准函数进行仿真测试,实验结果表明,MC-TDBO算法和原始DBO算法等四种算法相比,寻优速度、求解精度和稳定性均得到了显著提升.将MC-TDBO算法在阈值分割中进行应用测试,进一步验证其有效性.
Abstract_FL In response to the problem that the original dung beetle optimizer algorithm(DBO)is susceptible to its own influence,resulting in an imbalance between local and global search,and easily falling into the local optima.This paper proposes an adaptive t-distribution DBO with tissue-like membrane(MC-TDBO).Design adaptive inertia factors to change the step sizes of breeding dung beetles and stealing dung beetles,dynamically adjust the exploration range of indi-vidual dung beetles,and coordinate and optimize the global search and local development capabilities of the algorithm.Introduce whale optimization algorithm to improve the foraging behavior,promote the population to move closer to the opti-mal position,and enhance the computational accuracy of the algorithm.Combine success rate with adaptive t-distribution to enhance the ability to escape local optima.Combine tissue-like P system in membrane computing with improved DBO algorithm to enhance algorithm convergence efficiency.Simulated test using 14 benchmark functions shows that com-pared to the original DBO algorithm,MC-TDBO algorithm and other four algorithms have significantly improved optimi-zation speed,solution accuracy,and stability.Finally,MC-TDBO is used in threshold segmentation for the further valida-tion of its effectiveness.
Author 苏树智
许家昌
江琳
AuthorAffiliation 安徽理工大学第一附属医院(淮南市第一人民医院),安徽 淮南 232001;安徽理工大学 计算机科学与工程学院,安徽 淮南 232001%安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
AuthorAffiliation_xml – name: 安徽理工大学第一附属医院(淮南市第一人民医院),安徽 淮南 232001;安徽理工大学 计算机科学与工程学院,安徽 淮南 232001%安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
Author_FL JIANG Lin
SU Shuzhi
XU Jiachang
Author_FL_xml – sequence: 1
  fullname: XU Jiachang
– sequence: 2
  fullname: JIANG Lin
– sequence: 3
  fullname: SU Shuzhi
Author_xml – sequence: 1
  fullname: 许家昌
– sequence: 2
  fullname: 江琳
– sequence: 3
  fullname: 苏树智
BookMark eNo9jj9Lw0AYh2-oYK39Em4Oie-9l2suoxT_QUEHncsld1ca5AqeIt2kFttFcFAEkTq4Obh0EfN54sVvYUBx-sEzPM9vjTTsyGpCNiiELI7FVh4OnbMhBcBAMEZDjIAHAFQ0SPOfrpK2c8MUOGUxj1nSJFgtbsu7uS-mvpgd-WXhixf_NK1mb99Xk_Lz_ryc35Qf19Xza7WY-PfHr-XDOlkx8tTp9t-2yMnuznF3P-gd7h10t3uBo9ARgUSqOCKrYwoElUZQFfNMJ5pjJzOq_oSpZkYIwYU2qEyUaqooZalMBAJrkc1f76W0RtpBPx9dnNm62M9dPsjG4zECcogABPsBFBxbmA
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1002-8331.2405-0018
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Fusion of Adaptive t-Distribution Dung Beetle Optimizer Algorithm with Tissue P System
EndPage 113
ExternalDocumentID jsjgcyyy202504008
GrantInformation_xml – fundername: (安徽理工大学医学专项培育项目); (安徽理工大学医学专项培育项目); (南方林业与生态应用技术国家工程实验室开放基金项目); (国家自然科学基金); (安徽省自然科学基金面上项目); (安徽省高等学校自然科学研究基金重大项目)
  funderid: (安徽理工大学医学专项培育项目); (安徽理工大学医学专项培育项目); (南方林业与生态应用技术国家工程实验室开放基金项目); (国家自然科学基金); (安徽省自然科学基金面上项目); (安徽省高等学校自然科学研究基金重大项目)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1068-a21d5223051d081af81d75ce9e526cfd0022be3f88858ef2df4be1d113ba98203
ISSN 1002-8331
IngestDate Thu May 29 04:10:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 4
Keywords 自适应t分布
蜣螂算法
dynamic inertia weight
tissue-like P system
dung beetle optimizer algorithm
组织P系统
adaptive t-distribution
动态惯性权重
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1068-a21d5223051d081af81d75ce9e526cfd0022be3f88858ef2df4be1d113ba98203
PageCount 15
ParticipantIDs wanfang_journals_jsjgcyyy202504008
PublicationCentury 2000
PublicationDate 2025-02-15
PublicationDateYYYYMMDD 2025-02-15
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-15
  day: 15
PublicationDecade 2020
PublicationTitle 计算机工程与应用
PublicationTitle_FL Computer Engineering and Applications
PublicationYear 2025
Publisher 安徽理工大学 计算机科学与工程学院,安徽 淮南 232001%安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
安徽理工大学第一附属医院(淮南市第一人民医院),安徽 淮南 232001
Publisher_xml – name: 安徽理工大学 计算机科学与工程学院,安徽 淮南 232001%安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
– name: 安徽理工大学第一附属医院(淮南市第一人民医院),安徽 淮南 232001
SSID ssib051375739
ssib001102935
ssj0000561668
ssib023646291
ssib057620132
Score 2.0081651
Snippet TP301.6; 针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算...
SourceID wanfang
SourceType Aggregation Database
StartPage 99
Title 融合组织P系统的自适应t分布蜣螂算法
URI https://d.wanfangdata.com.cn/periodical/jsjgcyyy202504008
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1002-8331
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620132
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R27btRAcBVdGigQT_FWhNjq5OC1va_Sd-dThAiKRILSRX4GpTgk7lJcKhQikgaJAoSEUCjoKGjSIO57Dh9_wex6ffYlgAIdjTVej-fhsXdmrJ1ZhO6GVPd8ySwvDUPLi-FTjOIotjI7BodIExbrxePLD9nSmnd_na7PNR7XVi1tD6LFeOeXdSX_YlUYA7uqKtm_sOyUKAwADPaFI1gYjqeyMQ4ElgEWHRxQLG0sBA44brWw8EqAr2jIVSfFkOwqQPoaSQAG9n0cSLXkQTiKUMvH0hsoCOgJpocAcDW3Nvbdkq2jCPkBlhwHTPEoNrIsY12FBld9MoMGFICBogmDVF8C4iCcp7kEUwm0lB5cLd8JQw-wAEUBTNODm9oVCshBShVtkKl-M3ARXYXi21gSfbPE5keF-fHh6ELyovRTv6qGl5BaLmDaMaTNgymUAByQlGugg33W_KPuXKEqAQz2rO7HHssURyppfQe-iZMyNbXimpMyWwf4NSGI1fsj0P9dhZrf1I61LL4zjpWR2gTi1bxksSWWibdIUYt83JW7nAvtyhX9xSn9RYhA4U2wjdOebZW-1d_ajIfDoaMb8-keAPMOeHu7geb9zvKDR1WiAHG1rBIFtYsCc6quUZS4nPKqXy5VREyPU7NrACPM1NkayYqOxkrse78XWpcG9rKwt1mLYlfPo3Mm_Vzwi7nkAprbeXIRna01Jb2EnMnhq_Hrg3y0l4_2V_KjUT76mL_fm-x__vF8d_ztzWB88HL89cXkw6fJ4W7-5d33o7eX0Vo3WG0vWWZnFatPbCas0CEJJF7g60kCOUGYQdbKaZzKlDoszhIV2UepmwkhqEgzJ8m8KCUJmCoKJeQM7hXU6D3tpVfRAs8SAklcCpFD6HGIf-C5hIyzjEkZuaG8hu4YjTfMzNnfOGGn66dBuoHOVNPATdQYPNtOb0FGMIhuG_P-BIljuag
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E7%BB%84%E7%BB%87P%E7%B3%BB%E7%BB%9F%E7%9A%84%E8%87%AA%E9%80%82%E5%BA%94t%E5%88%86%E5%B8%83%E8%9C%A3%E8%9E%82%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E8%AE%B8%E5%AE%B6%E6%98%8C&rft.au=%E6%B1%9F%E7%90%B3&rft.au=%E8%8B%8F%E6%A0%91%E6%99%BA&rft.date=2025-02-15&rft.pub=%E5%AE%89%E5%BE%BD%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD+%E6%B7%AE%E5%8D%97+232001%25%E5%AE%89%E5%BE%BD%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD+%E6%B7%AE%E5%8D%97+232001&rft.issn=1002-8331&rft.volume=61&rft.issue=4&rft.spage=99&rft.epage=113&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2405-0018&rft.externalDocID=jsjgcyyy202504008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg