基于U型多尺度Transformer网络的红外小目标检测算法

TN219; 针对红外小目标特征难以提取、易被噪声干扰及复杂背景淹没等问题,提出了一种基于U型多尺度Transformer网络的检测算法.该算法在U型多尺度网络架构下,借助卷积操作提取、强化小目标局部显著性特征,同时又基于Transformer机制对图像全局特征进行建模,以获取红外图像背景信息;通过对所生成目标置信图与特征图的自注意力运算,完成了对图像浅层和深层特征的融合,实现了对像素级红外小目标的分割及检测.实验证明,在红外序列图像弱小飞机目标检测跟踪数据集中,即使针对背景复杂且含噪的图像进行检测,所提算法性能仍然优于对比算法,呈现了良好的鲁棒性及稳定、准确的检测效果.在算法阈值选用使FM平...

Full description

Saved in:
Bibliographic Details
Published in西北工业大学学报 Vol. 43; no. 1; pp. 154 - 162
Main Authors 段沛沛, 张严, 雒明世, 闫效莺
Format Journal Article
LanguageChinese
Published 西安石油大学 计算机学院,陕西 西安 710065%陕西科技大学 电子信息与人工智能学院,陕西 西安 710021 01.02.2025
Subjects
Online AccessGet full text
ISSN1000-2758
DOI10.1051/jnwpu/20254310154

Cover

Abstract TN219; 针对红外小目标特征难以提取、易被噪声干扰及复杂背景淹没等问题,提出了一种基于U型多尺度Transformer网络的检测算法.该算法在U型多尺度网络架构下,借助卷积操作提取、强化小目标局部显著性特征,同时又基于Transformer机制对图像全局特征进行建模,以获取红外图像背景信息;通过对所生成目标置信图与特征图的自注意力运算,完成了对图像浅层和深层特征的融合,实现了对像素级红外小目标的分割及检测.实验证明,在红外序列图像弱小飞机目标检测跟踪数据集中,即使针对背景复杂且含噪的图像进行检测,所提算法性能仍然优于对比算法,呈现了良好的鲁棒性及稳定、准确的检测效果.在算法阈值选用使FM平均值最大的情况下,其检测率为0.997 2,虚警率为2.82×10-7,精确率为0.912 7,而召回率则为0.921.
AbstractList TN219; 针对红外小目标特征难以提取、易被噪声干扰及复杂背景淹没等问题,提出了一种基于U型多尺度Transformer网络的检测算法.该算法在U型多尺度网络架构下,借助卷积操作提取、强化小目标局部显著性特征,同时又基于Transformer机制对图像全局特征进行建模,以获取红外图像背景信息;通过对所生成目标置信图与特征图的自注意力运算,完成了对图像浅层和深层特征的融合,实现了对像素级红外小目标的分割及检测.实验证明,在红外序列图像弱小飞机目标检测跟踪数据集中,即使针对背景复杂且含噪的图像进行检测,所提算法性能仍然优于对比算法,呈现了良好的鲁棒性及稳定、准确的检测效果.在算法阈值选用使FM平均值最大的情况下,其检测率为0.997 2,虚警率为2.82×10-7,精确率为0.912 7,而召回率则为0.921.
Abstract_FL To solve the problem of small targets feature extraction and the susceptibility of targets to being over-whelmed by noise and complex backgrounds,a detection method with U-shaped multiscale transformer network is proposed.Based on the U-shaped multiscale network architecture,the proposed method uses convolution operations to extract and enhance local salient features of small targets.Concurrently,it uses the Transformer mechanism to model global image features,facilitating the extraction and suppression of the image background.Subsequently,through self-attention operations on target confidence maps and feature maps,fusion of shallow and deep features in images is achieved.This accomplishes pixel-level segmentation of infrared small targets,fulfilling the purpose of target detection.Experiments demonstrate in infrared sequence image dim and small aircraft target detection and tracking data set,even when applied to infrared images with complex background and noisy,our method outper-forms the state-of-the-art detection methods.The method shows good robustness and high detection accuracy.When the threshold is selected to maximize the average of FM,the detection rate of our method reaches 0.997 2,its false alarm rate is 2.82×10-7,the precision rate is 0.912 7,and the recall rate is 0.921.
Author 雒明世
闫效莺
段沛沛
张严
AuthorAffiliation 西安石油大学 计算机学院,陕西 西安 710065%陕西科技大学 电子信息与人工智能学院,陕西 西安 710021
AuthorAffiliation_xml – name: 西安石油大学 计算机学院,陕西 西安 710065%陕西科技大学 电子信息与人工智能学院,陕西 西安 710021
Author_FL YAN Xiaoying
ZHANG Yan
LUO Mingshi
DUAN Peipei
Author_FL_xml – sequence: 1
  fullname: DUAN Peipei
– sequence: 2
  fullname: ZHANG Yan
– sequence: 3
  fullname: LUO Mingshi
– sequence: 4
  fullname: YAN Xiaoying
Author_xml – sequence: 1
  fullname: 段沛沛
– sequence: 2
  fullname: 张严
– sequence: 3
  fullname: 雒明世
– sequence: 4
  fullname: 闫效莺
BookMark eNotj71KA0EYALeIYIx5AB_B4sy3v7cpNfgHAZukDrt3u8GgG7kjJHYWgkVAsVAhiooGyxAQmxPfxr17DSNaTTfDrKCS6zuD0BqGDQwc13pueDKoESCcUQyYsxIqYwAISMjlMqqm6aEGXsfAiGRltOWfsu_ssu0fx3468fPMZ2-tRLnU9pNjkxRf18XnQzE5L7IXP73186vifpY_X-SvZ_nHuJjd5e83q2jJqqPUVP9ZQe2d7VZjL2ge7O43NptBikHIoK6NxRBaGhFjjFVcGUYosWANq_NYRhEIASHVEmsjTBjJMMZKhExSTYSwtILW_7xD5axy3U6vP0jcotgZ6e5pPBrp32tYTEv6A_uTY9M
ClassificationCodes TN219
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1051/jnwpu/20254310154
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Infrared small target detection algorithm with U-shaped multiscale transformer network
EndPage 162
ExternalDocumentID xbgydxxb202501018
GrantInformation_xml – fundername: 陕西省自然科学基础研究计划项目
  funderid: (S2023-JC-YB-2680)
GroupedDBID 2B.
4A8
92I
93N
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
PHGZM
PHGZT
PIMPY
PMFND
PSX
TCJ
ID FETCH-LOGICAL-s1068-9bef107f3c2eeefa5ae4232f0fe495d8cc066073b81be6e7c87d1a67483b266f3
ISSN 1000-2758
IngestDate Thu May 29 04:00:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords self-attention mechanism
红外小目标检测
自注意力机制
deep learning
image segmentation
深度学习
图像分割
infrared small target detection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1068-9bef107f3c2eeefa5ae4232f0fe495d8cc066073b81be6e7c87d1a67483b266f3
PageCount 9
ParticipantIDs wanfang_journals_xbgydxxb202501018
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle 西北工业大学学报
PublicationTitle_FL Journal of Northwestern Polytechnical University
PublicationYear 2025
Publisher 西安石油大学 计算机学院,陕西 西安 710065%陕西科技大学 电子信息与人工智能学院,陕西 西安 710021
Publisher_xml – name: 西安石油大学 计算机学院,陕西 西安 710065%陕西科技大学 电子信息与人工智能学院,陕西 西安 710021
SSID ssib059104284
ssib001129888
ssib046626106
ssib036436219
ssib044765131
ssib044604139
ssib051375596
ssib002258180
Score 2.4424598
Snippet TN219;...
SourceID wanfang
SourceType Aggregation Database
StartPage 154
Title 基于U型多尺度Transformer网络的红外小目标检测算法
URI https://d.wanfangdata.com.cn/periodical/xbgydxxb202501018
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANNTtxYsoKn5TxDmVtfmYz2OyTSiCRaQLvZUkmygIq9gWa08eBA8FxYMKVVS0eCwF8bLivzG7f8P3ZibdLNtD1cvw8vJm3tcw897uzIvj3FDSzXNY-dqsTHmbctprq7QHi6HI3MyVOc91df7by3ypS2-tstWZ1oPGqaXNjexmvn3kvZJ_8SrgwK94S_YvPHs4KCAABv9CCx6G9lg-JjEjKiFRSGKKrYy7GhUTGSEQUqJCBCJXEzFsQ75SB6vgrliQaJEoTwMRUR0EoJOkGgPkfj0StyPJRNNEJIxJzEkIGKGBAI9NABAxzV8ggdKvooCYj1zWcTCJJQlhtATHlB1NBo8CkaiLtIID31C_ChdB8AbAiQTZWD1fNP8YOSM3H6WrgTEJMOiguIZBs7PCDsrHPkqCGWsZ-AQJSKeHVSCyRA2A0P7OYX838Vl91NrO9Ak9QUCptO0StIgRMFLTes7rbjEJvQkrgnOMF60NQCSF_vE7FgbBan7z05znscQSZ8Rn0-Saj9DzQFsWHXmEVEBBtZE1ShlTJlpO6OaRMLGWsyYM62lnHMuRK2KAIMB593-6mEvvdkvF2gW-MAX66z3XlOaaWFvMBuqZkuI2FvPMTj21zcNOgtt8_8mjTbzRZCo6uId9J-qnb2X3nva2tjKkwoKK8oQz6wsItFvObBQv37k7zh4g9pXN6n0-w0oI9XMAwTv3x9UPKeUubRTVpVRw5o3_VKec-7xxiAHeCcjfx88QqUPyr8-91Daqz10wb0Frt9DQTV8r7Jdp_14jAl457ZyyqetcaNahM87M9v2zTlR9GvwevOxWH3eqvd3qYFANvjXWl9Gv16OfH0a7z0eDL9Xe2-rg1ej9_vDzi-HXZ8MfO6P9d8Pvb8453SRe6Sy17XdZ2uugDsRHWVF6riiD3C-KokxZWuBxj9ItC6pYT-Y55DEQOmSQEhe8ELkUPS_FrxoFGeQDZXDeafUf9osLzlzgBZmnUgiy_JSmiqUuFanIe1RkOR6Bu-hctzqv2XV3fW3KoZeOQ3TZOTleBa44rY3Hm8VVyCc2smt2HvwBSfrQYw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EU%E5%9E%8B%E5%A4%9A%E5%B0%BA%E5%BA%A6Transformer%E7%BD%91%E7%BB%9C%E7%9A%84%E7%BA%A2%E5%A4%96%E5%B0%8F%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E8%A5%BF%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%AE%B5%E6%B2%9B%E6%B2%9B&rft.au=%E5%BC%A0%E4%B8%A5&rft.au=%E9%9B%92%E6%98%8E%E4%B8%96&rft.au=%E9%97%AB%E6%95%88%E8%8E%BA&rft.date=2025-02-01&rft.pub=%E8%A5%BF%E5%AE%89%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89+710065%25%E9%99%95%E8%A5%BF%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6+%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E4%B8%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89+710021&rft.issn=1000-2758&rft.volume=43&rft.issue=1&rft.spage=154&rft.epage=162&rft_id=info:doi/10.1051%2Fjnwpu%2F20254310154&rft.externalDocID=xbgydxxb202501018
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxbgydxxb%2Fxbgydxxb.jpg