动态信息素更新和路径奖惩的蚁群算法
TP301.6; 针对蚁群算法容易陷入局部最优,收敛速度慢,难以解决大规模问题的情况,提出依据信息熵和停滞次数的动态信息素的更新策略和基于最优路径集合的奖惩策略的蚁群算法,在动态信息素更新策略中,利用收敛系数来动态调节信息素,从而有效地平衡算法的多样性和收敛性.在搜索过程中,通过持续增大收敛系数,加快了收敛速度;当信息熵降低或者停滞次数达到一定数值时,通过降低收敛系数,跳出局部最优.同时基于最优路径集合,对较优路径进行奖励,对其他路径进行惩罚,通过减少蚂蚁每一步可选城市的数量,加快了收敛速度.并且使用三种局部优化方法,从而进一步提高解的精度.经过实验测试,该算法用于解决旅行商问题(travel...
Saved in:
| Published in | 计算机工程与应用 Vol. 59; no. 4; pp. 64 - 76 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
上海工程技术大学 电子电气工程学院,上海 201620%上海工程技术大学 管理学院,上海 201620
15.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-8331 |
| DOI | 10.3778/j.issn.1002-8331.2207-0340 |
Cover
| Summary: | TP301.6; 针对蚁群算法容易陷入局部最优,收敛速度慢,难以解决大规模问题的情况,提出依据信息熵和停滞次数的动态信息素的更新策略和基于最优路径集合的奖惩策略的蚁群算法,在动态信息素更新策略中,利用收敛系数来动态调节信息素,从而有效地平衡算法的多样性和收敛性.在搜索过程中,通过持续增大收敛系数,加快了收敛速度;当信息熵降低或者停滞次数达到一定数值时,通过降低收敛系数,跳出局部最优.同时基于最优路径集合,对较优路径进行奖励,对其他路径进行惩罚,通过减少蚂蚁每一步可选城市的数量,加快了收敛速度.并且使用三种局部优化方法,从而进一步提高解的精度.经过实验测试,该算法用于解决旅行商问题(traveling salesman problem,TSP),具有较高的求解精度,并能有效平衡解的精度和收敛速度的矛盾. |
|---|---|
| ISSN: | 1002-8331 |
| DOI: | 10.3778/j.issn.1002-8331.2207-0340 |