饥饿搜索算法在地下水参数反演中的应用

TV211.1+2; 为提高水文地质参数求解精度,以2组抽水试验数据为例,引入饥饿搜索(Hunger Games Search,HGS)算法,采用实测降深与模拟降深的离差平方和均值达到最小为目标函数,优化求解泰斯公式导水系数和储水系数,结合评价指标并与多种智能优化算法如黄金正弦算法(Golden Sine Algorithm,Gold-SA)、天鹰优化算法(Aquila Optimizer,AO)、鲸鱼优化算法(Whale Optimization Algorithm,WOA)以及阿基米德算法(Archimedes optimization algorithm,AOA)5种算法的计算结果进行比...

Full description

Saved in:
Bibliographic Details
Published in中国农村水利水电 no. 8; pp. 106 - 116
Main Authors 王文川, 薛一铭, 徐雷
Format Journal Article
LanguageChinese
Published 华北水利水电大学水资源学院,郑州 450046%河海大学水文水资源学院,南京 210024 15.08.2022
Subjects
Online AccessGet full text
ISSN1007-2284

Cover

Abstract TV211.1+2; 为提高水文地质参数求解精度,以2组抽水试验数据为例,引入饥饿搜索(Hunger Games Search,HGS)算法,采用实测降深与模拟降深的离差平方和均值达到最小为目标函数,优化求解泰斯公式导水系数和储水系数,结合评价指标并与多种智能优化算法如黄金正弦算法(Golden Sine Algorithm,Gold-SA)、天鹰优化算法(Aquila Optimizer,AO)、鲸鱼优化算法(Whale Optimization Algorithm,WOA)以及阿基米德算法(Archimedes optimization algorithm,AOA)5种算法的计算结果进行比较.结果表明:HGS算法在地下水参数反演中表现出较好的全局寻优能力和稳健性;相比而言,HGS算法不仅反演精度最高,而且评价指标误差值最小,纳什效率系数值最接近1,综合性能最佳.因此,引入的HGS算法可以有效地提高水文地质参数求解精度的问题,为地下水参数反演提供了一种新的求解方法.
AbstractList TV211.1+2; 为提高水文地质参数求解精度,以2组抽水试验数据为例,引入饥饿搜索(Hunger Games Search,HGS)算法,采用实测降深与模拟降深的离差平方和均值达到最小为目标函数,优化求解泰斯公式导水系数和储水系数,结合评价指标并与多种智能优化算法如黄金正弦算法(Golden Sine Algorithm,Gold-SA)、天鹰优化算法(Aquila Optimizer,AO)、鲸鱼优化算法(Whale Optimization Algorithm,WOA)以及阿基米德算法(Archimedes optimization algorithm,AOA)5种算法的计算结果进行比较.结果表明:HGS算法在地下水参数反演中表现出较好的全局寻优能力和稳健性;相比而言,HGS算法不仅反演精度最高,而且评价指标误差值最小,纳什效率系数值最接近1,综合性能最佳.因此,引入的HGS算法可以有效地提高水文地质参数求解精度的问题,为地下水参数反演提供了一种新的求解方法.
Author 薛一铭
徐雷
王文川
AuthorAffiliation 华北水利水电大学水资源学院,郑州 450046%河海大学水文水资源学院,南京 210024
AuthorAffiliation_xml – name: 华北水利水电大学水资源学院,郑州 450046%河海大学水文水资源学院,南京 210024
Author_FL XUE Yi-ming
XU Lei
WANG Wen-chuan
Author_FL_xml – sequence: 1
  fullname: WANG Wen-chuan
– sequence: 2
  fullname: XUE Yi-ming
– sequence: 3
  fullname: XU Lei
Author_xml – sequence: 1
  fullname: 王文川
– sequence: 2
  fullname: 薛一铭
– sequence: 3
  fullname: 徐雷
BookMark eNotjT9LAzEcQDNUsNZ-EIeDX3L5d6MU_0HBReeSXpKilBQMIjiKm0gdrghyk3DQpXJghyKCX6bJ0W9hQacHb3hvD7XcxJkWamMAkRAi6S7qen81BMBblQncRnxTVZvqJ76UzfK9-XiNn7NQzkNZr1dPsV6G6UOc1WH6HL-L9WrRvD2Gr6Ip5vtox6qxN91_dtDl8dFF7zTpn5-c9Q77icfAeWK5ptjmoJgkijHgQ41BUA3aKkZS0BhTSTmhTBgptM6YyYHmWiqeqkyYtIMO_rp3ylnlRoPrye2N2x4H9yOX-7HXBAgBCZinv4c8V8c
ClassificationCodes TV211.1+2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Application of Hunger Game Search Algorithm in Groundwater Parameter Inversion
EndPage 116
ExternalDocumentID zgncslsd202208016
GrantInformation_xml – fundername: (河南省重点研发与推广专项); (河南省重点研发与推广专项); (河南省高校科技创新团队)
  funderid: (河南省重点研发与推广专项); (河南省重点研发与推广专项); (河南省高校科技创新团队)
GroupedDBID -04
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1066-f6d41fc0a582a5506bd1074d0dfa5230d1148462457e87dd95ec04cd8a63a97e3
ISSN 1007-2284
IngestDate Thu May 29 04:09:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords 优化求解
饥饿搜索算法
泰斯公式
参数反演
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1066-f6d41fc0a582a5506bd1074d0dfa5230d1148462457e87dd95ec04cd8a63a97e3
PageCount 11
ParticipantIDs wanfang_journals_zgncslsd202208016
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationTitle 中国农村水利水电
PublicationTitle_FL China Rural Water and Hydropower
PublicationYear 2022
Publisher 华北水利水电大学水资源学院,郑州 450046%河海大学水文水资源学院,南京 210024
Publisher_xml – name: 华北水利水电大学水资源学院,郑州 450046%河海大学水文水资源学院,南京 210024
SSID ssib001100971
ssj0037555
ssib051368504
ssib046786273
Score 2.3181467
Snippet TV211.1+2; 为提高水文地质参数求解精度,以2组抽水试验数据为例,引入饥饿搜索(Hunger Games Search,HGS)算法,采用实测降深与模拟降深的离差平方和均值达到最小为目标函数,...
SourceID wanfang
SourceType Aggregation Database
StartPage 106
Title 饥饿搜索算法在地下水参数反演中的应用
URI https://d.wanfangdata.com.cn/periodical/zgncslsd202208016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 1007-2284
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0037555
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZJTu2h9EnfhFKdgss-9Dxq12tCoT0lkFvYl9NDcaF2Lj6W3kpJDw6F4lPBkEuLoT6EUuifiW3yLzojr231QZsUjBhrPkmjmZU1I68kQh5mvpdzzy8gyOEQoMAcWctUmtW8PPdD1hSh4Lg5-clTsbnNHu_wnZXVkfPW0n4ne5R3_7iv5H-sCnlgV9wlew7LLiqFDKDBvpCChSE9k41poqnh-JkRUYMmgmqP6pgmkkaMmgAJk1AtkRWFVAOYI8Coiog8mjAaKaoii_GwILBUg6rAVsgtZpZTt5iYalaVMnVsQhuqbKnIWJbE1CjX93Xw0G5EI0soYaWFtE61_7MAANZOjq0z4vNnBDNUUkmtBVXStg-o-hKikAONVT30UFM6pMaBQJkElYYckEq6CyEQQ-PBtHzx6Fq56tguEvFcr_8QGVkG9GElBAUY4WAUAlB5wirPczAgkUYbBjHSKrQamvUx2WAclx1owG3JAI2LhGX_rb2Fss4rge05dpghzMQbAZ6sy5x5DVekg0AxZ0grZ97yPeG4QL7_y-nk1t_p7rXy9vN2gbqHOMMXq2QVZgtnGcO64L49lmz-HeZhiJmXLjL38cYDXAKYeUuh5PZm4oWAdvNcq5m29hw_b-syuVQFaOtmNtqukJXus6vkonNs5zUiTgeD08H3ybv-dPRx-vn95MvhuH807g9Pjt9MhqPxwavJ4XB88HbyrXdy_Gn64fX4a2_aO7pOthvJVrxZq-4fqbVBH6LWFAXzm7mXchWkEMmLrMDXlwuvaKb4Z0qBawlMBIzLUsmi0LzMPZYXKhVhqmUZ3iBrrRet8iZZFyyXvix1KXPBsoJrmEnTtCnDUDMeMnWLPKh6vVv9vrR3f9P37bOA7pALy8Fxl6x1Xu6X98Bv7mT3raF-ABlMh3I
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A5%A5%E9%A5%BF%E6%90%9C%E7%B4%A2%E7%AE%97%E6%B3%95%E5%9C%A8%E5%9C%B0%E4%B8%8B%E6%B0%B4%E5%8F%82%E6%95%B0%E5%8F%8D%E6%BC%94%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%86%9C%E6%9D%91%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5&rft.au=%E7%8E%8B%E6%96%87%E5%B7%9D&rft.au=%E8%96%9B%E4%B8%80%E9%93%AD&rft.au=%E5%BE%90%E9%9B%B7&rft.date=2022-08-15&rft.pub=%E5%8D%8E%E5%8C%97%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E5%A4%A7%E5%AD%A6%E6%B0%B4%E8%B5%84%E6%BA%90%E5%AD%A6%E9%99%A2%2C%E9%83%91%E5%B7%9E+450046%25%E6%B2%B3%E6%B5%B7%E5%A4%A7%E5%AD%A6%E6%B0%B4%E6%96%87%E6%B0%B4%E8%B5%84%E6%BA%90%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210024&rft.issn=1007-2284&rft.issue=8&rft.spage=106&rft.epage=116&rft.externalDocID=zgncslsd202208016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgncslsd%2Fzgncslsd.jpg