基于CEEMDAN-QPSO-BLS模型的径流预测研究

P338; 准确的径流预测是水资源优化配置和高效利用的前提,是制定防洪减灾决策的基础,然而受到人类活动、环境、气候等因素的影响,径流序列呈现出非线性、非稳态、多尺度变化的特点,这为径流的精准预测增加了难度.为提高径流预测的精准度和可信度,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)方法,量子粒子群优化算法(Quantum Particle Swarm Optimization,QPSO)、宽度学习系统(Broad Learning System,BLS)...

Full description

Saved in:
Bibliographic Details
Published in中国农村水利水电 no. 1; pp. 101 - 108
Main Authors 刘扬, 赵丽
Format Journal Article
LanguageChinese
Published 华北水利水电大学 黄河流域水资源高效利用省部共建协同创新中心,河南 郑州 450046%华北水利水电大学 信息工程学院,河南 郑州 450046 2024
Subjects
Online AccessGet full text
ISSN1007-2284
DOI10.12396/znsd.221701

Cover

Abstract P338; 准确的径流预测是水资源优化配置和高效利用的前提,是制定防洪减灾决策的基础,然而受到人类活动、环境、气候等因素的影响,径流序列呈现出非线性、非稳态、多尺度变化的特点,这为径流的精准预测增加了难度.为提高径流预测的精准度和可信度,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)方法,量子粒子群优化算法(Quantum Particle Swarm Optimization,QPSO)、宽度学习系统(Broad Learning System,BLS)模型,提出了一种基于CEEMDAN-QPSO-BLS组合式的径流预测模型.该组合模型首先使用CEEMDAN方法对原始径流信号进行分解,得到若干相对平稳的本征模态分量.其次利用QPSO算法对BLS模型的特征层节点组数、增强层节点组数和组内节点数进行寻优,得到最优的宽度学习网络拓扑结构,进而使用最优的QPSO-BLS对多个稳态分量进行预测,并对预测分量进行重构,从而获得更高的预测精度.以黄河流域小浪底水库的日径流值为实验数据,将EMD-QPSO-BLS、QPSO-BLS作为CEEMDAN-QPSO-BLS的对比模型,并采用纳什效率系数(NSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)作为模型预测可信度和精准度的评价指标.实验表明,在预见期4天内,与QPSO-BLS、EMD-QPSO-BLS模型相比,CEEMDAN-QPSO-BLS的预测精准度分别提高了79.87%、19.80%,可信度分别提高了131.2%、10.98%,径流预测精度的提高,可为防洪抗旱保护人民生命财产和可持续发展提供决策支持.
AbstractList P338; 准确的径流预测是水资源优化配置和高效利用的前提,是制定防洪减灾决策的基础,然而受到人类活动、环境、气候等因素的影响,径流序列呈现出非线性、非稳态、多尺度变化的特点,这为径流的精准预测增加了难度.为提高径流预测的精准度和可信度,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)方法,量子粒子群优化算法(Quantum Particle Swarm Optimization,QPSO)、宽度学习系统(Broad Learning System,BLS)模型,提出了一种基于CEEMDAN-QPSO-BLS组合式的径流预测模型.该组合模型首先使用CEEMDAN方法对原始径流信号进行分解,得到若干相对平稳的本征模态分量.其次利用QPSO算法对BLS模型的特征层节点组数、增强层节点组数和组内节点数进行寻优,得到最优的宽度学习网络拓扑结构,进而使用最优的QPSO-BLS对多个稳态分量进行预测,并对预测分量进行重构,从而获得更高的预测精度.以黄河流域小浪底水库的日径流值为实验数据,将EMD-QPSO-BLS、QPSO-BLS作为CEEMDAN-QPSO-BLS的对比模型,并采用纳什效率系数(NSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)作为模型预测可信度和精准度的评价指标.实验表明,在预见期4天内,与QPSO-BLS、EMD-QPSO-BLS模型相比,CEEMDAN-QPSO-BLS的预测精准度分别提高了79.87%、19.80%,可信度分别提高了131.2%、10.98%,径流预测精度的提高,可为防洪抗旱保护人民生命财产和可持续发展提供决策支持.
Abstract_FL An accurate runoff prediction is the prerequisite for the optimal allocation and efficient utilization of water resources,and the basis for making flood control and disaster reduction decisions.However,due to the influence of human activities,environment,climate and other factors,runoff series show nonlinear,unsteady and multi-scale changes,which increases the difficulty of accurate runoff prediction.In or-der to improve the accuracy and credibility of runoff prediction,this paper combines the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)method.Quantum Particle Swarm Optimization(QPSO),Broad Learning System(BLS)model,a com-bined runoff prediction model based on CEEEDAN-QPSO-BLS is proposed.Firstly,CEEMDAN method is used to decompose the original runoff signal to obtain several relatively stationary intrinsic mode components.Secondly,the QPSO algorithm is used to optimize the number of node groups in the feature layer,the number of node groups in the enhancement layer and the number of nodes in the group of BLS model,and the optimal topology structure of the width learning network is obtained.Then,the optimal QPSO-BLS is used to predict multiple steady-state components,and the prediction components are reconstructed so as to obtain higher prediction accuracy.In this model,the daily runoff value of Xiaolangdi Reservoir in the Yellow River Basin is used as the experimental data,and EMD-QPSO-BLS and QPSO-BLS are used as the comparison model of CEEMDAN-QPSO-BLS.Nash-Sutcliffe efficiency coefficient(NSE),Root Mean Squared Error(RMSE),Mean Absolute Error(MAE)and Mean Absolute Percentage Error(MAPE)are used to evaluate the reliability and accuracy of the model predic-tion.The experimental results show that,compared with QPSO-BLS with EMD-QPSO-BLS models,the prediction accuracy of CEEMDAN-QPSO-BLS is improved by 79.87%and 19.80%,and the credibility is improved by 131.2%and 10.98%,respectively.This paper provides decision-making support for flood control and drought relief to protect people's lives and property and sustainable development.
Author 赵丽
刘扬
AuthorAffiliation 华北水利水电大学 黄河流域水资源高效利用省部共建协同创新中心,河南 郑州 450046%华北水利水电大学 信息工程学院,河南 郑州 450046
AuthorAffiliation_xml – name: 华北水利水电大学 黄河流域水资源高效利用省部共建协同创新中心,河南 郑州 450046%华北水利水电大学 信息工程学院,河南 郑州 450046
Author_FL LIU Yang
ZHAO Li
Author_FL_xml – sequence: 1
  fullname: LIU Yang
– sequence: 2
  fullname: ZHAO Li
Author_xml – sequence: 1
  fullname: 刘扬
– sequence: 2
  fullname: 赵丽
BookMark eNotjbtKA0EYRqeIYIzpfAmLif8_l52dMq7xAqtRonWY2dkNSpiAgwjphHSBVFYW3ip9AC1S-DRuFt_CBW3OgVN83wZp-InPCdlC6CDjOtqZ-uA6jKECbJAmAijKWCzWSTuESwuAddIKmwTLp-X3cpH0esd73RN6djro0910sHp7KR_n1cOs_JqtPu5-XmvOq-f76v1zk6wVZhzy9r9b5GK_d54c0rR_cJR0UxoQIkltkcW5dVwWSjMeO4tQS0gVc5lbHjNjtNRWRBIyJ5xkRmjHLCplVZRby1tk-2_31vjC-NHwanJz7evH4XTkszAOjgETgICS_wIZQVHt
ClassificationCodes P338
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12396/znsd.221701
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Runoff Prediction and Analysis Based on CEEMDAN-QPSO-BLS Method
EndPage 108
ExternalDocumentID zgncslsd202401015
GrantInformation_xml – fundername: 河南省水利科技攻关项目
  funderid: (GG202042)
GroupedDBID -04
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1065-bfc8ebd35f79238db10238457835eb382aa959b4650cd4d52a49d2b177b76ebb3
ISSN 1007-2284
IngestDate Thu May 29 04:09:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords runoff prediction
宽度学习
量子粒子群
CEEMDAN
BLS
径流预测
EMD
QPSO
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1065-bfc8ebd35f79238db10238457835eb382aa959b4650cd4d52a49d2b177b76ebb3
PageCount 8
ParticipantIDs wanfang_journals_zgncslsd202401015
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 中国农村水利水电
PublicationTitle_FL China Rural Water and Hydropower
PublicationYear 2024
Publisher 华北水利水电大学 黄河流域水资源高效利用省部共建协同创新中心,河南 郑州 450046%华北水利水电大学 信息工程学院,河南 郑州 450046
Publisher_xml – name: 华北水利水电大学 黄河流域水资源高效利用省部共建协同创新中心,河南 郑州 450046%华北水利水电大学 信息工程学院,河南 郑州 450046
SSID ssib001100971
ssj0037555
ssib051368504
ssib046786273
Score 2.3771923
Snippet P338; 准确的径流预测是水资源优化配置和高效利用的前提,是制定防洪减灾决策的基础,然而受到人类活动、环境、气候等因素的影响,径流序列呈现出非线性、非稳态、多尺度变化的特...
SourceID wanfang
SourceType Aggregation Database
StartPage 101
Title 基于CEEMDAN-QPSO-BLS模型的径流预测研究
URI https://d.wanfangdata.com.cn/periodical/zgncslsd202401015
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1007-2284
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0037555
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEI7KcoED4ineqhA-rVLWjp3YRzubVYVoAbWVequSTbYc0CKx28vekHqrxIkTB14n-AFw6IFfQ1vxL5iZuE2AHlqEFHknzuib8YzljGdjOwjuV0JGQ_yHMU5GMpS5kKGJTR7GBS8TMeLDROEC56XleHFNPlxX63OdpdZXS1vTYmE4O3Zdyb94FerAr7hK9hSePQKFCqDBv1CCh6E8kY9ZppgZMGdZJrHUWZplS327HD59svI4dI9WWBYzq5nlxJox7ViWMAOsEmtcRkTMnIKQkmWGWdGqIWbbY0YSYZiL28EsSQXwPoE75ojQMTMpIpg-M5ygesyROK0RpKlJENmpQ6d7FqORRYMuafNEo0Jw1SJdv52tEE2ekiD6YAgiUmaSkyiAj6xkNiGiz2zcRVs4d2gLwVzUMhNZHa4GiNTzzJaZHpnS-aYYEtyIJ6ngFSRSb3cdUQ3wQDNJBEhHx9btGZDQHjbJG8kRMinQdoMbIJRIW2oTgkm6Xoyp0UF21pUKMxdMqP9oN4k6WHI8NM0OvDSrqA9p6lWeGzUy1OdOp3DrTYo5cCHq8_9-G0TqNyX3OazK3-lj3-ciMphbmo0n5YIQeHZAE7ccfU062xwPJ88nJfY33DJRnQnOCkzPtTIsNDvgtGPa4T2ECDCdb6J3xfEwBsxO1IFclCg6NPmoJX7dDOr0oKURLfcbj_LxZisyXb0YXPBTynlbjw-XgrnZs8vB-dZGo1cCvvd-98fu6z9Hh_3PH_fe7Ry83d77vr3_9dXPT1DuHHx4c_Dl29VgbZCtpouhPywlnHCYRoTFaKiroozUCHcE1WWBe7JoqTCzWxWRFnlulCkkzMiGpSyVyKUpBW4-VyRxVRTRtaAzfjGurgfznBelFjDrjvNScp3rUo8A1RQJ_OQlvxHc8w3e8IPhZOMvH9w8CdOt4BzSdUrzdtCZvtyq7kCQPy3ukut-AS5hpTE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ECEEMDAN-QPSO-BLS%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%BE%84%E6%B5%81%E9%A2%84%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%86%9C%E6%9D%91%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5&rft.au=%E5%88%98%E6%89%AC&rft.au=%E8%B5%B5%E4%B8%BD&rft.date=2024&rft.pub=%E5%8D%8E%E5%8C%97%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E5%A4%A7%E5%AD%A6+%E9%BB%84%E6%B2%B3%E6%B5%81%E5%9F%9F%E6%B0%B4%E8%B5%84%E6%BA%90%E9%AB%98%E6%95%88%E5%88%A9%E7%94%A8%E7%9C%81%E9%83%A8%E5%85%B1%E5%BB%BA%E5%8D%8F%E5%90%8C%E5%88%9B%E6%96%B0%E4%B8%AD%E5%BF%83%2C%E6%B2%B3%E5%8D%97+%E9%83%91%E5%B7%9E+450046%25%E5%8D%8E%E5%8C%97%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E5%A4%A7%E5%AD%A6+%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E9%83%91%E5%B7%9E+450046&rft.issn=1007-2284&rft.issue=1&rft.spage=101&rft.epage=108&rft_id=info:doi/10.12396%2Fznsd.221701&rft.externalDocID=zgncslsd202401015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgncslsd%2Fzgncslsd.jpg