正态随机仿射变换的图像数据增强方法

TP391; 针对现有图像数据增强方法会生成大量无效冗余数据,导致训练数据质量降低和网络泛化性能减弱的问题,提出一种基于正态分布的随机仿射变换(random affine transformation based on normal distribution,NRAff)图像数据增强方法.NRAff的核心是设计一个正态随机仿射变换模块,在随机仿射变换中引入正态分布,使图像随机仿射变换幅度以原图像为中心呈正态分布形式输出,通过限制变换图像输出的分布范围,去除无效数据,获取更有效且具有正态分布特性的图像数据.NRAff方法仿照生物视觉感知系统的正态分布采样机制,使生成的图像分布接近生物视觉主观感知...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与应用 Vol. 60; no. 23; pp. 176 - 186
Main Authors 姜文涛, 陈霖霖, 张晟翀
Format Journal Article
LanguageChinese
Published 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105%光电信息控制和安全技术重点实验室,天津 300308 01.12.2024
Subjects
Online AccessGet full text
ISSN1002-8331
DOI10.3778/j.issn.1002-8331.2307-0327

Cover

Abstract TP391; 针对现有图像数据增强方法会生成大量无效冗余数据,导致训练数据质量降低和网络泛化性能减弱的问题,提出一种基于正态分布的随机仿射变换(random affine transformation based on normal distribution,NRAff)图像数据增强方法.NRAff的核心是设计一个正态随机仿射变换模块,在随机仿射变换中引入正态分布,使图像随机仿射变换幅度以原图像为中心呈正态分布形式输出,通过限制变换图像输出的分布范围,去除无效数据,获取更有效且具有正态分布特性的图像数据.NRAff方法仿照生物视觉感知系统的正态分布采样机制,使生成的图像分布接近生物视觉主观感知效果,突出目标感知的正态分布特性,使网络在变换的特征中学习不变的特征.该方法能够提高图像数据分布的一致性,使网络学习到更多有效的、潜在的仿射变换不变特征,提高网络抗过拟合能力.在图像分类数据集CIFAR10,CIFAR100,SVHN,Fashion-MNIST和Imagenette上,与当前先进的数据增强方法进行实验和对比分析,实验结果表明,提出的图像增强方法在分类准确率上均有不同程度的提升,验证了NRAff方法的有效性和普适性.
AbstractList TP391; 针对现有图像数据增强方法会生成大量无效冗余数据,导致训练数据质量降低和网络泛化性能减弱的问题,提出一种基于正态分布的随机仿射变换(random affine transformation based on normal distribution,NRAff)图像数据增强方法.NRAff的核心是设计一个正态随机仿射变换模块,在随机仿射变换中引入正态分布,使图像随机仿射变换幅度以原图像为中心呈正态分布形式输出,通过限制变换图像输出的分布范围,去除无效数据,获取更有效且具有正态分布特性的图像数据.NRAff方法仿照生物视觉感知系统的正态分布采样机制,使生成的图像分布接近生物视觉主观感知效果,突出目标感知的正态分布特性,使网络在变换的特征中学习不变的特征.该方法能够提高图像数据分布的一致性,使网络学习到更多有效的、潜在的仿射变换不变特征,提高网络抗过拟合能力.在图像分类数据集CIFAR10,CIFAR100,SVHN,Fashion-MNIST和Imagenette上,与当前先进的数据增强方法进行实验和对比分析,实验结果表明,提出的图像增强方法在分类准确率上均有不同程度的提升,验证了NRAff方法的有效性和普适性.
Abstract_FL In view of the fact that the existing image data augmentation method generates a large amount of invalid and redundant data,resulting in reduced training data quality and weakened network generalization performance,a random affine transformation based on normal distribution(NRAff)image data enhancement method based on normal distribution is proposed.The core of NRAff is to design a normal random affine transformation module,which introduces normal distribution in the random affine transformation,so that the amplitude of the random affine transformation of the image is output in the form of normal distribution centered on the original image,and the image data with normal distribution characteristics is obtained by limiting the distribution range of the transformed image output,removing invalid data,and obtaining more efficient image data with normal distribution characteristics.The NRAff method imitates the normal distri-bution sampling mechanism of the biological visual perception system,so that the generated image distribution is close to the subjective perception effect of biological vision,highlights the normal distribution characteristics of target perception,and enables the network to learn unchanged features in the transformed features.This method can improve the consistency of image data distribution,enable the network to learn more effective and potential affine transformation invariant features,and improve the network resistance to overfitting.Experiments and comparative analysis are carried out on the image clas-sification dataset CIFAR10,CIFAR100,SVHN,Fashion-MNIST and Imagenette,and the experimental results show that the proposed image enhancement method has different degrees of improvement in classification accuracy,which verifies the effectiveness and universality of the NRAff method.
Author 张晟翀
姜文涛
陈霖霖
AuthorAffiliation 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105%光电信息控制和安全技术重点实验室,天津 300308
AuthorAffiliation_xml – name: 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105%光电信息控制和安全技术重点实验室,天津 300308
Author_FL JIANG Wentao
CHEN Linlin
ZHANG Shengchong
Author_FL_xml – sequence: 1
  fullname: JIANG Wentao
– sequence: 2
  fullname: CHEN Linlin
– sequence: 3
  fullname: ZHANG Shengchong
Author_xml – sequence: 1
  fullname: 姜文涛
– sequence: 2
  fullname: 陈霖霖
– sequence: 3
  fullname: 张晟翀
BookMark eNo9jz9Lw0AYh2-oYK39Em4OiXf3Xu69jFL8BwUXncsluZQGuYKHSDbFriVTRao41FkpOFlFv4w58VtYUJx-8AzPw2-NNOzQGkI2GA0BUW0V4cA5GzJKeaAAWMiBYkCBY4M0_-kqaTs3SGjEACOEuEnAPz74i8vvaeXvFp-vH_V8VFc3fjz7mo7q2_f6qvKTuR8_1bP7-m3hr1_882SdrOT6xJn237bI8e7OUWc_6B7uHXS2u4FjVIrAJFJJbkSUyURJneQS0xSB8dhwCVEmOOeCKsmMVDlqzDnNME4pMoVKYwQtsvnrPdc217bfK4Znp3ZZ7BWu6KdlWXLKxfIoE_ADU5dcrw
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1002-8331.2307-0327
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Image Data Augmentation Method for Normal Random Affine Transformation
EndPage 186
ExternalDocumentID jsjgcyyy202423014
GrantInformation_xml – fundername: 国家部委预研基金; (辽宁省自然科学基金); (辽宁省教育厅重点基金)
  funderid: 国家部委预研基金; (辽宁省自然科学基金); (辽宁省教育厅重点基金)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1064-eb6862e45d6b86abf67cc73129e2635d422240861e68f7a7f20d79c071878a753
ISSN 1002-8331
IngestDate Thu May 29 04:10:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 23
Keywords 仿射变换
图像分类
data augmentation
image classification
数据增强
正态分布
normal distribution
affine transformation
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1064-eb6862e45d6b86abf67cc73129e2635d422240861e68f7a7f20d79c071878a753
PageCount 11
ParticipantIDs wanfang_journals_jsjgcyyy202423014
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机工程与应用
PublicationTitle_FL Computer Engineering and Applications
PublicationYear 2024
Publisher 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105%光电信息控制和安全技术重点实验室,天津 300308
Publisher_xml – name: 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105%光电信息控制和安全技术重点实验室,天津 300308
SSID ssib051375739
ssib001102935
ssj0000561668
ssib023646291
ssib057620132
Score 2.002351
Snippet TP391; 针对现有图像数据增强方法会生成大量无效冗余数据,导致训练数据质量降低和网络泛化性能减弱的问题,提出一种基于正态分布的随机仿射变换(random affine transformation based on normal...
SourceID wanfang
SourceType Aggregation Database
StartPage 176
Title 正态随机仿射变换的图像数据增强方法
URI https://d.wanfangdata.com.cn/periodical/jsjgcyyy202423014
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcIibix7EJ74JYp_Cxp2e6dexe3eWIMaLCeQW5rVKDiuY5JCcFHMNOUUkiod4VgKejKI_4474F1ZX92SHJEIUlqHorldX9XZXD1PVQXAvSjsDyUTazgUdtGPBB-2MpgU8bPH1AtZNZhOF5x7x2YX4wSJbnGipxldLa6vZTL5xYl7J_3gV2sCvNkv2Hzx7yBQaAAb_whM8DM9T-ZgknOge0ZEFZAeiQpIoojSRfduiusRoksTEGGKghREDOLEFAEFJpAJyShKBVNilADlBnKjmg4QeGbuARCFgnAjA4cQoC5iIuPss65CXJNJS6dBKAUCJhm7AARoZdkkiDWoLgGOuiYpRtxh666mB8oVl4MRK5GcANmMUsIIiUiLQtVg10OQCymscF-CqvhUEVnI3PtUvQmh85KMSOxowj-mhGgma_PggQCttHeIGqtH2OrZqWwCsyKeRUQ_7nIP4YZ9XH4xMu8flIaUKiTYWADkaKQ24xEzbQLLDCGXoQPgpbz_DUE4f_cCt2hp9C5Z2WoGxnAqKEtmtpSnPR8uTBqWs8WFSgAhJ0f9IZacGqK_HfGDstFsbwU0TANh0hIWMGhsj7px1dp3fOd1NEH6FoFFjHwwFb4RUoat2fnS3joSQuFtbCTOHEjA3od2JXM2II9XQl1eWn-Tr6-t2AlD7OuBMMEkFhM2tYFL35h4-Hp8FIHRW47OAvSiB03FhKBZGgolxSVw4d9OOL2PqLwbgIfeptF4zV7TYqn3_70pj9t9wkA6fNALV-QvBeX_CnNJuubgYTGw8vRSca9QdvRxE1ccP1YuXv3e3q3cHP7_-GO1vjrbfVFt7v3Y3R2-_j15tVzv71dan0d770beD6vWX6vPOlWChn8x3Z9v-9pT2SgjnjHaZ2eSvMmYFzyRPswEXeS4iiO9LW4CqsO9-447kYcnlQKRiQDuFUDkcOaSQqWDR1aA1fDYsrwVTIhJZKXhWCJ7Hac6lLCkrRcFYFBcsldeDu37IS351XFk65qgbp0G6GZwd_7VvBa3V52vlbYj6V7M73r9_AAzZtKE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%AD%A3%E6%80%81%E9%9A%8F%E6%9C%BA%E4%BB%BF%E5%B0%84%E5%8F%98%E6%8D%A2%E7%9A%84%E5%9B%BE%E5%83%8F%E6%95%B0%E6%8D%AE%E5%A2%9E%E5%BC%BA%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E5%A7%9C%E6%96%87%E6%B6%9B&rft.au=%E9%99%88%E9%9C%96%E9%9C%96&rft.au=%E5%BC%A0%E6%99%9F%E7%BF%80&rft.date=2024-12-01&rft.pub=%E8%BE%BD%E5%AE%81%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6+%E8%BD%AF%E4%BB%B6%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81+%E8%91%AB%E8%8A%A6%E5%B2%9B+125105%25%E5%85%89%E7%94%B5%E4%BF%A1%E6%81%AF%E6%8E%A7%E5%88%B6%E5%92%8C%E5%AE%89%E5%85%A8%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%A4%A9%E6%B4%A5+300308&rft.issn=1002-8331&rft.volume=60&rft.issue=23&rft.spage=176&rft.epage=186&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2307-0327&rft.externalDocID=jsjgcyyy202423014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg