融合LR编码网络和扩散模型的遥感图像超分辨率算法

TP391.4; 针对遥感图像超分辨率重建效果模糊、重建过程中细节纹理丢失的问题,提出一种适用于多尺度任务的遥感图像超分辨率网络模型 pDDPMSR(denoising diffusion probabilistic model of super-resolution).通过组合移位卷积和串联多注意力机制构建高效像素移位卷积模块SCAM(shifted convolution attention module),扩大感受野以增强对局部特征的提取能力,从而提高图像清晰度,同时使用多注意力在通道和空间维度关注图像高频信息,以增强轮廓细节信息的表达.为了防止细节纹理丢失,设计了融合坐标注意力与多尺度...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与应用 Vol. 60; no. 22; pp. 271 - 281
Main Authors 许晓阳, 张梦飞
Format Journal Article
LanguageChinese
Published 西安科技大学计算机科学与技术学院,西安 710054 15.11.2024
Subjects
Online AccessGet full text
ISSN1002-8331
DOI10.3778/j.issn.1002-8331.2311-0166

Cover

Abstract TP391.4; 针对遥感图像超分辨率重建效果模糊、重建过程中细节纹理丢失的问题,提出一种适用于多尺度任务的遥感图像超分辨率网络模型 pDDPMSR(denoising diffusion probabilistic model of super-resolution).通过组合移位卷积和串联多注意力机制构建高效像素移位卷积模块SCAM(shifted convolution attention module),扩大感受野以增强对局部特征的提取能力,从而提高图像清晰度,同时使用多注意力在通道和空间维度关注图像高频信息,以增强轮廓细节信息的表达.为了防止细节纹理丢失,设计了融合坐标注意力与多尺度空洞卷积金字塔网络结构CA-ASPP(coordinate attention and atrous spatial pyramid pooling),以便捕获不同尺度的上下文信息.引入去噪扩散概率模型(denoising diffusion probabilistic model,DDPM)生成高分辨率图像,采用跳层采样加快DDPM图像推理速度.设计非线性噪声调度方案解决DDPM加噪结束时噪声过大的问题.在公开数据集RSSCN7上的实验结果表明,pDDPMSR在峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity,SSIM)上较对比算法重建效果更加显著,并且跳层采样方法使扩散模型推理过程加快10倍.
AbstractList TP391.4; 针对遥感图像超分辨率重建效果模糊、重建过程中细节纹理丢失的问题,提出一种适用于多尺度任务的遥感图像超分辨率网络模型 pDDPMSR(denoising diffusion probabilistic model of super-resolution).通过组合移位卷积和串联多注意力机制构建高效像素移位卷积模块SCAM(shifted convolution attention module),扩大感受野以增强对局部特征的提取能力,从而提高图像清晰度,同时使用多注意力在通道和空间维度关注图像高频信息,以增强轮廓细节信息的表达.为了防止细节纹理丢失,设计了融合坐标注意力与多尺度空洞卷积金字塔网络结构CA-ASPP(coordinate attention and atrous spatial pyramid pooling),以便捕获不同尺度的上下文信息.引入去噪扩散概率模型(denoising diffusion probabilistic model,DDPM)生成高分辨率图像,采用跳层采样加快DDPM图像推理速度.设计非线性噪声调度方案解决DDPM加噪结束时噪声过大的问题.在公开数据集RSSCN7上的实验结果表明,pDDPMSR在峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity,SSIM)上较对比算法重建效果更加显著,并且跳层采样方法使扩散模型推理过程加快10倍.
Abstract_FL Aiming at the problem that the effect of remote sensing image super-resolution reconstruction is fuzzy and the detail texture is lost in the reconstruction process,a remote sensing image super-resolution network model pDDPMSR suitable for multi-scale tasks is proposed.Firstly,an efficient pixel shift convolution module SCAM is constructed by combining shift convolution and serial multi-attention mechanism to expand the receptive field to enhance the extraction of local features,so as to improve the image clarity.At the same time,multi-attention is used to focus on the high-frequency information of the image in the channel and spatial dimensions to enhance the expression of contour detail information.Secondly,in order to prevent the loss of detailed texture,CA-ASPP is designed to fuse coordinate attention and multi-scale atrous convolutional pyramid network,so as to capture context information at different scales.Finally,the denoising diffusion probabilistic model(DDPM)is introduced to generate the high-resolution image.The layer skip sampling is used to accelerate the reasoning speed of DDPM.A nonlinear noise scheduling scheme is designed to solve the problem of excessive noise at the end of DDPM adding noise.Experimental results on the public dataset RSSCN7 show that the reconstruction effect of pDDPMSR is more significant than the comparison algorithms in peak signal-to-noise ratio(PSNR)and structural similarity(SSIM),and the method of layer skip sampling accelerates the inference process of diffu-sion model by 10 times.
Author 许晓阳
张梦飞
AuthorAffiliation 西安科技大学计算机科学与技术学院,西安 710054
AuthorAffiliation_xml – name: 西安科技大学计算机科学与技术学院,西安 710054
Author_FL ZHANG Mengfei
XU Xiaoyang
Author_FL_xml – sequence: 1
  fullname: XU Xiaoyang
– sequence: 2
  fullname: ZHANG Mengfei
Author_xml – sequence: 1
  fullname: 许晓阳
– sequence: 2
  fullname: 张梦飞
BookMark eNo9jctKw0AARWdRwVr7E-5cJM4rmWQp9QkBQbovmcmkNEgKDiJZFqtWrE-ogkpVRKgbN4IbtX8zmfgXKoqbe-Aszp0CpbSdSgBmELQJY95cYreUSm0EIbY8QpCNCUIWRK5bAuV_OwmqSrU4dBBhDiN-GSwUwyN92gvWzfuFueuYjzPzdqPP-_nBUz54yEf3enhorrqfnce8e6uvx3rnpHjd1b29Yjwyx_vm-TJ_GUyDiTjcULL6xwqoLy3WaytWsLa8WpsPLIWgSy0kQifyqIcJx9RHsaCchkKEDDMMpYh4JEkkMYMxdSPpMQmdyPe5G7uES0eSCpj9zW6HaRymzUbS3tpMvw8biUqaIssyDDHFP0O-ABFfaMU
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1002-8331.2311-0166
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Remote Sensing Image Super-Resolution Algorithm Based on LR Coding Network and Diffusion Model
EndPage 281
ExternalDocumentID jsjgcyyy202422024
GrantInformation_xml – fundername: (国家自然科学基金); (陕西省特支计划青年拔尖人才项目)
  funderid: (国家自然科学基金); (陕西省特支计划青年拔尖人才项目)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1064-1ca5d84823b2491fc4b4acca72720ecdbde3de270f46de87e05d99b6f63be5e3
ISSN 1002-8331
IngestDate Thu May 29 04:10:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 22
Keywords 遥感图像
扩散模型
注意力机制
多尺度空洞卷积
diffusion model
multi-scale atrous convolution
attention mechanism
super-resolution reconstruction
超分辨率重建
remote sensing image
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1064-1ca5d84823b2491fc4b4acca72720ecdbde3de270f46de87e05d99b6f63be5e3
PageCount 11
ParticipantIDs wanfang_journals_jsjgcyyy202422024
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationTitle 计算机工程与应用
PublicationTitle_FL Computer Engineering and Applications
PublicationYear 2024
Publisher 西安科技大学计算机科学与技术学院,西安 710054
Publisher_xml – name: 西安科技大学计算机科学与技术学院,西安 710054
SSID ssib051375739
ssib001102935
ssj0000561668
ssib023646291
ssib057620132
Score 2.008598
Snippet TP391.4; 针对遥感图像超分辨率重建效果模糊、重建过程中细节纹理丢失的问题,提出一种适用于多尺度任务的遥感图像超分辨率网络模型 pDDPMSR(denoising diffusion...
SourceID wanfang
SourceType Aggregation Database
StartPage 271
Title 融合LR编码网络和扩散模型的遥感图像超分辨率算法
URI https://d.wanfangdata.com.cn/periodical/jsjgcyyy202422024
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1002-8331
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620132
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxVBEG6yXPQgrrgTxD7Ji7P0eux5bx5BEg8xQm5hthfJ4QkmOSS3YNSIuxAFl6iIEC9eBC9q_s17E_-FVT3zFhOV6GUouqu_qa6a7qoZpqoJOa_iNOOZy2GlOUmFaRFVIoWVMBsyEgm4eEdh7vDEZTF2lV2a5tMDg6_7_lpaXIhHk-Xf5pX8j1WhDeyKWbL_YNkuKDQADfaFK1gYrnuyMQ0V1SFVNRpyqh2q1PgkDSUNqlQLJAy0ubalRnVBBFRXLbtHFRCCKk2NRkJzanwkjKLGtTyAHeAobahiNNSIZrgdxaiuW56ABiESyqeqjhIF0Mtti6JK2JYQMQFHAaC0goVUS8QJfFocf9mJkJEfeo37CxvIHBjEDKQVQCIgysZooBAWuwzVzErLoLfzJJV4wIUwmmof56FBKL_HwlFloCycvEeNQBbQhQ77P4p4DLMDi7RQ-xhbaBhq9QD3AE2iYNKqGpRg8DcS7GLYiETNYv9lgt3hXebuBLuAltnU-3g0TgwE96q7RbqAhZWKCtql87HeqZPBVnqn4rSFchUWKdwdX1OcXVOGLV5x8s1Oj-hLqaxHxDuMdu8wCmE9fkYSO8qQ28Bmbn5uNllaWkLFengZJMOeFMIbIsOmNjF-pRdvQ3iqe_E2HkYgvF7xJe76kste2Vl4t_WcslRoWXxfgAhFumopWVEYGMW--GehbYZdsxE1Z_uCwamD5ED5FjdiiiV5iAwsXztM9vfV9jxCatsbD1qP18Yn82_P8rcr-fcn-ddXraf323c_ttfftzfftTbu5S9Wf6x8aK--ab3cat18tP3lVmvt9vbWZv7wTv7pefvz-lEyVQ-nqmOV8siSyrwLwX3FTSKeKqY8P_aYdhsJi1kEm6T93SFLUtgZ_TTzpNNgIs2UzByeah2LhvBj2DP9Y2Soeb2ZHScjbuLHgKMaMZewhTLFpU4dkaVJkkYidU6Qc6UKZsodaX5ml-FO7oXpFNnXW0KnydDCjcXsDETaC_HZ0t4_AdaLn8s
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88LR%E7%BC%96%E7%A0%81%E7%BD%91%E7%BB%9C%E5%92%8C%E6%89%A9%E6%95%A3%E6%A8%A1%E5%9E%8B%E7%9A%84%E9%81%A5%E6%84%9F%E5%9B%BE%E5%83%8F%E8%B6%85%E5%88%86%E8%BE%A8%E7%8E%87%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E8%AE%B8%E6%99%93%E9%98%B3&rft.au=%E5%BC%A0%E6%A2%A6%E9%A3%9E&rft.date=2024-11-15&rft.pub=%E8%A5%BF%E5%AE%89%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E8%A5%BF%E5%AE%89+710054&rft.issn=1002-8331&rft.volume=60&rft.issue=22&rft.spage=271&rft.epage=281&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2311-0166&rft.externalDocID=jsjgcyyy202422024
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg