融合多尺度特征的YOLOv8裂缝缺陷检测算法
TP391.4; 针对井壁裂缝背景复杂,纵横比差异大,导致检测效率低、漏检等问题,提出了一种融合多尺度特征的裂缝缺陷检测模型EDG-YOLO.设计特征提取模块EIRBlock(efficient inverted residual block),并构建C2fEIR增强主干网络对井壁浅层裂缝特征信息的提取能力.在颈部融合CSP_EDRAN(CSP efficient dilated reparam aggregation network)实现对裂缝特征信息的复用,促进浅层与深层语义信息之间的交互.嵌入DAM(dual attention module)注意力机制,增强井壁裂缝特征的表达能力.构建...
Saved in:
| Published in | 计算机工程与应用 Vol. 60; no. 22; pp. 261 - 270 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
安徽理工大学 电气与信息工程学院,安徽 淮南 232001%安徽理工大学 人工智能学院,安徽 淮南 232001
15.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-8331 |
| DOI | 10.3778/j.issn.1002-8331.2404-0332 |
Cover
| Abstract | TP391.4; 针对井壁裂缝背景复杂,纵横比差异大,导致检测效率低、漏检等问题,提出了一种融合多尺度特征的裂缝缺陷检测模型EDG-YOLO.设计特征提取模块EIRBlock(efficient inverted residual block),并构建C2fEIR增强主干网络对井壁浅层裂缝特征信息的提取能力.在颈部融合CSP_EDRAN(CSP efficient dilated reparam aggregation network)实现对裂缝特征信息的复用,促进浅层与深层语义信息之间的交互.嵌入DAM(dual attention module)注意力机制,增强井壁裂缝特征的表达能力.构建轻量级检测头GDetect,借助GSConv模块进一步轻量化网络.在自制井壁裂缝数据集上的实验结果表明,与YOLOv8相比,EDG-YOLO的平均检测精度达到87.4%,提高了 2.3个百分点,模型的参数量和计算量分别降低了 33%和47%,单幅图像推理时间为13.2 ms,满足井下场景的实时检测需求. |
|---|---|
| AbstractList | TP391.4; 针对井壁裂缝背景复杂,纵横比差异大,导致检测效率低、漏检等问题,提出了一种融合多尺度特征的裂缝缺陷检测模型EDG-YOLO.设计特征提取模块EIRBlock(efficient inverted residual block),并构建C2fEIR增强主干网络对井壁浅层裂缝特征信息的提取能力.在颈部融合CSP_EDRAN(CSP efficient dilated reparam aggregation network)实现对裂缝特征信息的复用,促进浅层与深层语义信息之间的交互.嵌入DAM(dual attention module)注意力机制,增强井壁裂缝特征的表达能力.构建轻量级检测头GDetect,借助GSConv模块进一步轻量化网络.在自制井壁裂缝数据集上的实验结果表明,与YOLOv8相比,EDG-YOLO的平均检测精度达到87.4%,提高了 2.3个百分点,模型的参数量和计算量分别降低了 33%和47%,单幅图像推理时间为13.2 ms,满足井下场景的实时检测需求. |
| Abstract_FL | To solve the problems of low detection efficiency and missing detection caused by complex background and large aspect ratio difference of shaft lining cracks,a crack defect detection model EDG-YOLO with multi-scale features is proposed.Firstly,the feature extraction module EIRBlock(efficient inverted residual block)is designed,and C2fEIR is constructed to enhance the ability of backbone network to extract the shallow crack feature information.Secondly,the CSP_EDRAN(CSP efficient dilated reparam aggregation network)is fused in the neck to realize the reuse of the crack feature information,and promote the interaction between the shallow and deep semantic information.Meanwhile,the attention mechanism of DAM(dual attention module)is embedded to enhance the expression ability of shaft lining crack features.Finally,a lightweight detection head GDetect is constructed,and the network is further lightweight with the help of GSConv module.The experimental results on the self-made shaft lining crack dataset show that,compared with YOLOv8,the average detection accuracy of EDG-YOLO is 87.4%,which is increased by 2.3 percentage points,the num-ber of parameters and the amount of calculation of the model are reduced by 33%and 47%respectively.The inference time of a single image is 13.2 ms,which meets the real-time detection requirements of downhole scenes. |
| Author | 贾晓芬 程瑞丰 赵佰亭 |
| AuthorAffiliation | 安徽理工大学 电气与信息工程学院,安徽 淮南 232001%安徽理工大学 人工智能学院,安徽 淮南 232001 |
| AuthorAffiliation_xml | – name: 安徽理工大学 电气与信息工程学院,安徽 淮南 232001%安徽理工大学 人工智能学院,安徽 淮南 232001 |
| Author_FL | CHENG Ruifeng JIA Xiaofen ZHAO Baiting |
| Author_FL_xml | – sequence: 1 fullname: ZHAO Baiting – sequence: 2 fullname: CHENG Ruifeng – sequence: 3 fullname: JIA Xiaofen |
| Author_xml | – sequence: 1 fullname: 赵佰亭 – sequence: 2 fullname: 程瑞丰 – sequence: 3 fullname: 贾晓芬 |
| BookMark | eNo9jT1Lw0Ach2-oYK39Em4OiXf3v_QuoxTfIJBFB6eS3EtpkCt4qGRTcVBE6CJiQZeKowgiYih-myT1W1hQXH4PPMPzW0INO7QaoRWCfeBcrGX-wDnrE4ypJwCITxlmHgagDdT8t4uo7dwgxQEBHnAIm6gze7wpR5fl07h8Lcriub76LL_O6vHFfhzFx2I2Oa-nD_W0-L7_qCan1ft1_XJXvd0uowWTHDjd_mML7W1u7Ha3vSje2umuR54juAMeZ2moGOOGplwqypQSOk2x0oJrIahUoeKKAaNGgwwUBEyFhgBhUtPEaAkttPrbPUmsSWy_lw2PDu38sZe5rC_zPKeYMjofgB9FR166 |
| ClassificationCodes | TP391.4 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3778/j.issn.1002-8331.2404-0332 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | YOLOv8 Crack Defect Detection Algorithm Based on Multi-Scale Features |
| EndPage | 270 |
| ExternalDocumentID | jsjgcyyy202422023 |
| GrantInformation_xml | – fundername: (国家自然科学基金); (安徽省自然科学基金面上项目) funderid: (国家自然科学基金); (安徽省自然科学基金面上项目) |
| GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGT U1G U5S |
| ID | FETCH-LOGICAL-s1063-74b9d447f2b7cd24dd8ebb0de87e882cd9d7d4342fe3c5d354d9f1314ce2afec3 |
| ISSN | 1002-8331 |
| IngestDate | Thu May 29 04:10:55 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 22 |
| Keywords | 井壁裂缝 注意力机制 shaft lining crack attention mechanism 目标检测 YOLOv8 object detection 轻量化 lightweight |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1063-74b9d447f2b7cd24dd8ebb0de87e882cd9d7d4342fe3c5d354d9f1314ce2afec3 |
| PageCount | 10 |
| ParticipantIDs | wanfang_journals_jsjgcyyy202422023 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-15 |
| PublicationDateYYYYMMDD | 2024-11-15 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | 计算机工程与应用 |
| PublicationTitle_FL | Computer Engineering and Applications |
| PublicationYear | 2024 |
| Publisher | 安徽理工大学 电气与信息工程学院,安徽 淮南 232001%安徽理工大学 人工智能学院,安徽 淮南 232001 |
| Publisher_xml | – name: 安徽理工大学 电气与信息工程学院,安徽 淮南 232001%安徽理工大学 人工智能学院,安徽 淮南 232001 |
| SSID | ssib051375739 ssib001102935 ssj0000561668 ssib023646291 ssib057620132 |
| Score | 2.005659 |
| Snippet | TP391.4; 针对井壁裂缝背景复杂,纵横比差异大,导致检测效率低、漏检等问题,提出了一种融合多尺度特征的裂缝缺陷检测模型EDG-YOLO.设计特征提取模块EIRBlock(efficient... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 261 |
| Title | 融合多尺度特征的YOLOv8裂缝缺陷检测算法 |
| URI | https://d.wanfangdata.com.cn/periodical/jsjgcyyy202422023 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1002-8331 databaseCode: ADMLS dateStart: 20200501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620132 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahRBsImbix7EJ74JYp_CxJl-THcfZ3YnBEnMwQTiKey8EnJYwSRCclLxoIjgRcSAXiIeRRARQ_BvNhv_wqqe3peJECMsTVHTU1OPnqrqYauLkFtlqFnOm76Xmrz0wOFxD7ZBMKSwWRGAVBl-Gpi5G07NizsLcmGkpgf-tbS-lk5km4fWlRzHqoADu2KV7D9YtkcUEACDfWEEC8N4JBvTRFOTUN2giaTGp1ojEAlqIgRin8YVENEopImi2tDYWAzcFSAGZmpxf3Z69pFGahGnmiE-rlPTcAASMdTAvYomoZ3jIxBLqmOcEyXU2Esxp1Uzy26-a2kmNAqGppl6lzFASntJW1KCxgAkjmcjLIcCrnbXBdKDx8IP5zZQRARAvkZ_So8c3Byggiq6sT9ERaASkBkQjSNGA5X64FcQJrAcsKoDtevWajdBLVYqjK2GUPHhgDTWApGyQAMUP-6kQKZD5Bjl6kkKwKTVT4gWiSYPU4sj5KwQMXgvDrIybqlbLQMK1oRR45DI2h4J8ticW-UOGctqDDHAG7eE_pO9gbhoA2e3uM4FzqoRhHMQVXV5NwxWB-y7jIpVrWH-DNZcKW2DNT5hoveECcgxhedz99l7-DD0ldWVpWxjYwOXAIOBnyCjDOK5XyOjUWNm-l5_KwCZs-lvBbBPQsj650LJgCup-ifiSiTiTjF1fQHCIHSVtI6z6sxiZPv235m2xX-tstlaGshT586Q026DORZV3uIsGdlcPkdODRw7ep6E-x9etV8_b3_can_Zae986rz40f75pLP1rPID-9tPO7vvO7s7v95939t-vPftZefz272vby6Q-clkrj7luf4p3moAOw9Poa8VQpUsVVnORJ7rIk39vNCqgI11loMnzgUXrCx4JnMuRW7KgAcCmwSWRcYvklrrQau4RMYKwdIskwWkvKFQkjUh8MtmmedNnxelCi-Tm07qRecfVxcP2OrKUSZdJSf77_c1Ult7uF5ch7x_Lb3hTPwbycG28w |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E5%A4%9A%E5%B0%BA%E5%BA%A6%E7%89%B9%E5%BE%81%E7%9A%84YOLOv8%E8%A3%82%E7%BC%9D%E7%BC%BA%E9%99%B7%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E8%B5%B5%E4%BD%B0%E4%BA%AD&rft.au=%E7%A8%8B%E7%91%9E%E4%B8%B0&rft.au=%E8%B4%BE%E6%99%93%E8%8A%AC&rft.date=2024-11-15&rft.pub=%E5%AE%89%E5%BE%BD%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD+%E6%B7%AE%E5%8D%97+232001%25%E5%AE%89%E5%BE%BD%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E5%AE%89%E5%BE%BD+%E6%B7%AE%E5%8D%97+232001&rft.issn=1002-8331&rft.volume=60&rft.issue=22&rft.spage=261&rft.epage=270&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2404-0332&rft.externalDocID=jsjgcyyy202422023 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg |