基于集成学习和卷积神经网络的电网客服短期话务量预测
TP183%F426.61; 现代供电服务体系对用电客户服务的服务质量提出更高要求,精准的供电服务话务量预测不仅可以提高用电客户服务质量,还能有效降低客服人员成本.为此,基于集成学习和卷积神经网络提出一种电网短期话务量预测方法.首先,采用孤立森林算法进行异常数据识别,建立拉格朗日插值函数对异常数据或缺失数据进行修补;其次,利用层次分析法量化用户信息、气象信息和停电信息,采用灰色关联法分析话务量的影响因子,将影响因子作为话务量预测模型输入;然后,构建自适应增强(Adaboost)算法集成多个卷积神经网络(CNN)模型,提出一种Adaboost-CNN的话务量预测模型;最后,考虑供电服务系统增值服...
Saved in:
| Published in | 上海交通大学学报 Vol. 59; no. 2; pp. 266 - 273 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
华南理工大学电力学院,广州 510640%广东电网有限责任公司客户服务中心,广州 510699%华南理工大学电力学院,广州 510640
28.02.2025
广东电网有限责任公司客户服务中心,广州 510699 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1006-2467 |
| DOI | 10.16183/j.cnki.jsjtu.2023.383 |
Cover
| Summary: | TP183%F426.61; 现代供电服务体系对用电客户服务的服务质量提出更高要求,精准的供电服务话务量预测不仅可以提高用电客户服务质量,还能有效降低客服人员成本.为此,基于集成学习和卷积神经网络提出一种电网短期话务量预测方法.首先,采用孤立森林算法进行异常数据识别,建立拉格朗日插值函数对异常数据或缺失数据进行修补;其次,利用层次分析法量化用户信息、气象信息和停电信息,采用灰色关联法分析话务量的影响因子,将影响因子作为话务量预测模型输入;然后,构建自适应增强(Adaboost)算法集成多个卷积神经网络(CNN)模型,提出一种Adaboost-CNN的话务量预测模型;最后,考虑供电服务系统增值服务,对预测结果进行修正,得到最终的话务量预测值.算例分析表明,所提预测模型较单一预测模型误差平均减少11.05个百分点、较组合预测模型误差平均减少5.32个百分点,具有更好的预测精度. |
|---|---|
| ISSN: | 1006-2467 |
| DOI: | 10.16183/j.cnki.jsjtu.2023.383 |