基于Transformer和扩散模型的头颅侧位片颈椎分割方法在正畸临床中的初步应用

R783.5; 目的·针对错 畸形生长发育高峰期骨骼形态变化复杂、难以精准评估的临床难点,利用扩散模型与Transformer深度学习算法构建颈椎图像分割模型并评估其分割性能.方法·使用基于Transformer与扩散模型相结合的方法对185例正畸患者(44例来自重庆医科大学附属口腔医院,141例来自西安交通大学口腔医院)的头颅侧位片进行精准的颈椎分割.首先对图像进行预处理,裁剪出感兴趣的颈椎骨区域,随机将所有数据划分为训练集(79.6%)和测试集(20.4%).利用U-Net构成的扩散模型和条件模型进行特征提取,引入Transformer模块学习噪声和语义特征之间的相互作用.将多尺度图像进行...

Full description

Saved in:
Bibliographic Details
Published in上海交通大学学报(医学版) Vol. 44; no. 12; pp. 1579 - 1586
Main Authors 刘洋, 吴梦怡, 胡尧, 亓坤, 王渝彬, 赵悦, 宋锦璘
Format Journal Article
LanguageChinese
Published 重庆医科大学附属口腔医院正畸科,重庆 401147%重庆邮电大学通信与信息工程学院,重庆 400065%西安交通大学口腔医院正畸科,西安 710004 28.12.2024
Subjects
Online AccessGet full text
ISSN1674-8115
DOI10.3969/j.issn.1674-8115.2024.12.011

Cover

Abstract R783.5; 目的·针对错 畸形生长发育高峰期骨骼形态变化复杂、难以精准评估的临床难点,利用扩散模型与Transformer深度学习算法构建颈椎图像分割模型并评估其分割性能.方法·使用基于Transformer与扩散模型相结合的方法对185例正畸患者(44例来自重庆医科大学附属口腔医院,141例来自西安交通大学口腔医院)的头颅侧位片进行精准的颈椎分割.首先对图像进行预处理,裁剪出感兴趣的颈椎骨区域,随机将所有数据划分为训练集(79.6%)和测试集(20.4%).利用U-Net构成的扩散模型和条件模型进行特征提取,引入Transformer模块学习噪声和语义特征之间的相互作用.将多尺度图像进行融合,以增强低对比度图像中的细微结构和边界纹理特征.将该方法与U-Net和SOLOv2方法进行比较,通过Dice相似系数(Dice similarity coefficient,DSC)、交并比(intersection over union,IoU)2项指标定量比较颈椎图像分割性能.通过医师的人工标注结果和模型可视化结果对分割性能进行定性评估.结果·基于Transformer的扩散模型颈椎图像分割方法的DSC和IoU评分分别达到93.3%和87.5%,明显优于U-Net和SOLOv2方法(在DSC上分别领先3.0%和4.1%,在IoU上分别领先5.2%和7.1%).尽管单张图像的处理时间较长,但分割精度显著提升.相较于U-Net和SOLOv2,基于Transformer的扩散模型颈椎图像分割方法在处理复杂、低对比度和边界模糊的图像时表现出更高的稳定性和鲁棒性,能够精准分割出颈椎骨的清晰边界和完整结构.结论·基于Transformer的扩散模型颈椎图像分割网络能够增强颈椎图像中的边缘和纹理特征,更容易识别不同椎骨的边界,从而获得自动、准确、稳健的颈椎分割结果,可辅助颈椎骨成熟度分析.
AbstractList R783.5; 目的·针对错 畸形生长发育高峰期骨骼形态变化复杂、难以精准评估的临床难点,利用扩散模型与Transformer深度学习算法构建颈椎图像分割模型并评估其分割性能.方法·使用基于Transformer与扩散模型相结合的方法对185例正畸患者(44例来自重庆医科大学附属口腔医院,141例来自西安交通大学口腔医院)的头颅侧位片进行精准的颈椎分割.首先对图像进行预处理,裁剪出感兴趣的颈椎骨区域,随机将所有数据划分为训练集(79.6%)和测试集(20.4%).利用U-Net构成的扩散模型和条件模型进行特征提取,引入Transformer模块学习噪声和语义特征之间的相互作用.将多尺度图像进行融合,以增强低对比度图像中的细微结构和边界纹理特征.将该方法与U-Net和SOLOv2方法进行比较,通过Dice相似系数(Dice similarity coefficient,DSC)、交并比(intersection over union,IoU)2项指标定量比较颈椎图像分割性能.通过医师的人工标注结果和模型可视化结果对分割性能进行定性评估.结果·基于Transformer的扩散模型颈椎图像分割方法的DSC和IoU评分分别达到93.3%和87.5%,明显优于U-Net和SOLOv2方法(在DSC上分别领先3.0%和4.1%,在IoU上分别领先5.2%和7.1%).尽管单张图像的处理时间较长,但分割精度显著提升.相较于U-Net和SOLOv2,基于Transformer的扩散模型颈椎图像分割方法在处理复杂、低对比度和边界模糊的图像时表现出更高的稳定性和鲁棒性,能够精准分割出颈椎骨的清晰边界和完整结构.结论·基于Transformer的扩散模型颈椎图像分割网络能够增强颈椎图像中的边缘和纹理特征,更容易识别不同椎骨的边界,从而获得自动、准确、稳健的颈椎分割结果,可辅助颈椎骨成熟度分析.
Abstract_FL Objective·To construct a cervical vertebra image segmentation model by using a diffusion model with the Transformer deep learning algorithm,and evaluate its segmentation performance,to address the clinical challenge of accurately assessing complex changes in skeletal morphology during the growth and developmental peaks of malocclusion.Methods·Accurate cervical vertebra segmentation was performed on cephalometric radiographs from 185 orthodontic patients(44 cases from the Stomatological Hospital of Chongqing Medical University and 141 cases from the Stomatological Hospital of Xi'an Jiaotong University)by using a method combining Transformer and diffusion models.First,the images were preprocessed to crop out the cervical vertebra region of interest,and all data were randomly divided into a training set(79.6%)and a test set(20.4%).The diffusion model and a conditional model based on U-Net were utilized for feature extraction,with a Transformer module introduced to learn the interaction between noise and semantic features.Multi-scale images were fused to enhance fine structure and boundary texture features in low-contrast images.The proposed method was compared with U-Net and SOLOv2 methods.The segmentation performance was quantitatively evaluated by two metrics,Dice Similarity Coefficient(DSC)and Intersection over Union(IoU),and also qualitatively assessed through physicians'manual annotations and model visualization results.Results·The cervical vertebra segmentation method based on Transformer and diffusion models achieved DSC and IoU scores of 93.3%and 87.5%,respectively,significantly outperforming the U-Net and SOLOv2 methods(with improvements of 3.0%and 4.1%in DSC,and 5.2%and 7.1%in loU,respectively).Despite the longer processing time for a single image,segmentation accuracy was significantly improved.Compared with U-Net and SOLOv2,the proposed method also showed higher stability and robustness in processing complex,low-contrast and blurred-boundary images,and was able to accurately segment the cervical vertebrae with clear boundaries and complete structures.Conclusion·The Transformer-based diffusion model for cervical vertebra segmentation can enhance the edge and texture features in cervical vertebra images and recognize the boundaries of different vertebrae more easily.Thus,automatic,accurate,and robust cervical vertebra segmentation results are achieved,which can assist in cervical vertebral maturation analysis.
Author 赵悦
王渝彬
吴梦怡
宋锦璘
亓坤
刘洋
胡尧
AuthorAffiliation 重庆医科大学附属口腔医院正畸科,重庆 401147%重庆邮电大学通信与信息工程学院,重庆 400065%西安交通大学口腔医院正畸科,西安 710004
AuthorAffiliation_xml – name: 重庆医科大学附属口腔医院正畸科,重庆 401147%重庆邮电大学通信与信息工程学院,重庆 400065%西安交通大学口腔医院正畸科,西安 710004
Author_FL LIU Yang
QI Kun
WU Mengyi
ZHAO Yue
SONG Jinlin
WANG Yubin
HU Yao
Author_FL_xml – sequence: 1
  fullname: LIU Yang
– sequence: 2
  fullname: WU Mengyi
– sequence: 3
  fullname: HU Yao
– sequence: 4
  fullname: QI Kun
– sequence: 5
  fullname: WANG Yubin
– sequence: 6
  fullname: ZHAO Yue
– sequence: 7
  fullname: SONG Jinlin
Author_xml – sequence: 1
  fullname: 刘洋
– sequence: 2
  fullname: 吴梦怡
– sequence: 3
  fullname: 胡尧
– sequence: 4
  fullname: 亓坤
– sequence: 5
  fullname: 王渝彬
– sequence: 6
  fullname: 赵悦
– sequence: 7
  fullname: 宋锦璘
BookMark eNo9kEtLAkEAx-dgkJXfolvstjOjszvHkF4gdLGzzOzOllYr7BDZvYf28BDaIXqQGtnBS3mwhfo0O7P4LVKKTn_483_Abw6kgmogAFiElokpocsVsyxlYEJiZw0HwpyJLJQ1ITItCFMg_e_PgoyUZW5ZNqEY2VYaCPUUxVGzGLJA-tXwQITq5ko33nS7q_vP6vEyuTtRveG4cxp_v8Zf10njfNyp615T1c9U413ffuqPtrrv60E3aY_i0VBFF_FoMG3VH_TgRUWtpNVfADM-25ci86fzYHtttZjfMApb65v5lYIhoUWgQQUnfhY51MWQQc92cgxxyn3CKRY2zxGXceE6TBDBqO9yRj2EbXcS8AXCjo3nwdLv7hELfBbslCrVwzCYPJbkrieO97xajU_RQDQBg38A7eaA1A
ClassificationCodes R783.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1674-8115.2024.12.011
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Preliminary application of a cervical vertebra segmentation method based on Transformer and diffusion model for lateral cephalometric radiographs in orthodontic clinical practice
EndPage 1586
ExternalDocumentID shdeykdxxb202412011
GroupedDBID -05
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CIEJG
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1061-9eb6f4289c31a1d785a2b9bf6b93e7b56cabec8ae6ea9fcba9d237cbf6fe23873
ISSN 1674-8115
IngestDate Thu May 29 03:59:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 扩散模型
deep learning
头颅侧位片
diffusion model
cervical vertebra segmentation
lateral cephalometric radiograph
深度学习
颈椎分割
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1061-9eb6f4289c31a1d785a2b9bf6b93e7b56cabec8ae6ea9fcba9d237cbf6fe23873
PageCount 8
ParticipantIDs wanfang_journals_shdeykdxxb202412011
PublicationCentury 2000
PublicationDate 2024-12-28
PublicationDateYYYYMMDD 2024-12-28
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-28
  day: 28
PublicationDecade 2020
PublicationTitle 上海交通大学学报(医学版)
PublicationTitle_FL Journal of Shanghai Jiaotong University(Medical Science)
PublicationYear 2024
Publisher 重庆医科大学附属口腔医院正畸科,重庆 401147%重庆邮电大学通信与信息工程学院,重庆 400065%西安交通大学口腔医院正畸科,西安 710004
Publisher_xml – name: 重庆医科大学附属口腔医院正畸科,重庆 401147%重庆邮电大学通信与信息工程学院,重庆 400065%西安交通大学口腔医院正畸科,西安 710004
SSID ssib007693270
ssib021364667
ssib051367862
ssib006260104
ssib008858007
ssib005076848
ssib006702980
ssib036439378
ssj0001538017
Score 2.417159
Snippet R783.5; 目的·针对错 畸形生长发育高峰期骨骼形态变化复杂、难以精准评估的临床难点,利用扩散模型与Transformer深度学习算法构建颈椎图像分割模型并评估其分割性能.方法·使...
SourceID wanfang
SourceType Aggregation Database
StartPage 1579
Title 基于Transformer和扩散模型的头颅侧位片颈椎分割方法在正畸临床中的初步应用
URI https://d.wanfangdata.com.cn/periodical/shdeykdxxb202412011
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-8115
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0001538017
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1674-8115
  databaseCode: ABDBF
  dateStart: 20160901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib006260104
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahRBcNAExIsoKj6DB_sUNu709PM4szuLCHpKIDeZ2Z1VECKYBGLOPhIfOYjxID4wUYyHXDSHGNCv2dngX1hV05udxFWiXobe7npXb3dVz3S35130W6ppk0RAktNUFSHSrJJAalsxaZW3dRujDHyje_WaujwhrkzKyQPD5a-WZmfSseb8wH0l_-JVqAO_4i7Zv_DsDlGogDL4F57gYXjuy8cslsw2WBSyWODTxOO9OBQ8gY2cmRqLFTOWhRYLVrIwwEJoWOgTTMxMxGLNLBAQWBMCMSgACqBLoh2zUFOhzkwdgYGg0T0YQwQhKo0RHX4aRQXLIk5MFYuIexSgAMi0hgIgVp3k0VgfGWJhiLskhUJXE9Z3SQgsbL2HLh2wFQQjgHI55HYUkBQIAJDaWSskHfFLj9BpjTpKoqlKBYW4yAUsXSNlJVo1ikowhUFMD2ZndaUnLOkKapmo3GKrpKpCIzpOVfBKHwTEDpybImjR_RbSwAZEBUQQ5dUbTmdEut3w-H8jPTV5rjCrKumgUW3rDzKBZdY6i0c-dhTEapDDDPYMK0p0CDjkg5zaY8Frv0oyKjBZ1ozLQVJCDZgmdo6N5GApnQ8BoEHWKhwel2rAsj4LG0RZkzM1dkAT7dUWFPiNlBhGk5QG8SOiBZKB3_fZnf7Xcnv5juKRWcWt2i6sUFpUjF9sXO7FHUKUx1deiiJ8WVyw5CJSXxanxe-NdgKrLEU7yGNsh8cY9jN6x-HCmN3nyU_fbGV3b7Xm5lKE8zEBOOgNcwiKqkPecBjVo0Z_gqb39KUJmu9ev1Eab3DoT_h4sSovBQDGSEhId_Ib7gdKqH6-E2A6FPTPE5R4fqRx55cWxzwEEEHTBVk97Q7B_FKofulPitMezKl2MnWjlC6MH_WOuDz_QlgM2se8A_M3j3tZ_nars7VUGqTzZ0-6i5-6y6vdtXf5m8fbL-_l7zd-rNzvfP_Y-fZ0e_Hhj5WF7vulfOFBvvi5--Jr98ty_mqtu766vbzZ2dzItx51NtcRa-F1d_1DvvV8-_naCW-iEY_XLlfcPTeVaVyQq9gsVW3BjW0GfuK3tJEJT23aVqkNMp1K1UxgpjVJprLEtptpYls80E0AaGeQcengpDc0dXsqO-VdUFXe4i2VyTSQIlPWcBlUq5lRmAi2beu0d9GZ5bqbx6avD-gQZ_YHdtY73B_TznlDM3dms_OQo82kI64njdAa509chSkE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ETransformer%E5%92%8C%E6%89%A9%E6%95%A3%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%A4%B4%E9%A2%85%E4%BE%A7%E4%BD%8D%E7%89%87%E9%A2%88%E6%A4%8E%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95%E5%9C%A8%E6%AD%A3%E7%95%B8%E4%B8%B4%E5%BA%8A%E4%B8%AD%E7%9A%84%E5%88%9D%E6%AD%A5%E5%BA%94%E7%94%A8&rft.jtitle=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E5%8C%BB%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E5%88%98%E6%B4%8B&rft.au=%E5%90%B4%E6%A2%A6%E6%80%A1&rft.au=%E8%83%A1%E5%B0%A7&rft.au=%E4%BA%93%E5%9D%A4&rft.date=2024-12-28&rft.pub=%E9%87%8D%E5%BA%86%E5%8C%BB%E7%A7%91%E5%A4%A7%E5%AD%A6%E9%99%84%E5%B1%9E%E5%8F%A3%E8%85%94%E5%8C%BB%E9%99%A2%E6%AD%A3%E7%95%B8%E7%A7%91%2C%E9%87%8D%E5%BA%86+401147%25%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E9%80%9A%E4%BF%A1%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86+400065%25%E8%A5%BF%E5%AE%89%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%8F%A3%E8%85%94%E5%8C%BB%E9%99%A2%E6%AD%A3%E7%95%B8%E7%A7%91%2C%E8%A5%BF%E5%AE%89+710004&rft.issn=1674-8115&rft.volume=44&rft.issue=12&rft.spage=1579&rft.epage=1586&rft_id=info:doi/10.3969%2Fj.issn.1674-8115.2024.12.011&rft.externalDocID=shdeykdxxb202412011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshdeykdxxb%2Fshdeykdxxb.jpg