面向方面级情感分析的多视图表示模型
TP391; 面向特定方面的用户评论细粒度情感分析是当前自然语言处理领域一个热门的研究话题,针对评论语句在内容表达和句法结构上的灵活性,综合运用词性、句法、语义等知识增强评论语句的特征表示是当前一种主要的研究思路.基于此,提出一种多视图融合表示的图卷积网络模型.该模型通过自注意力和特定方面注意力,学习得到评论语句基于上下文的增强表示;分别利用句法依赖信息和词共现信息,通过图卷积操作得到评论语句基于句法和基于语义的两种不同表示;在获得三种不同视图表示的基础上设计了一种分层融合方式,通过对三种表示的不同组合与卷积操作实现不同视图表示间的信息共享与互补.五个公开数据集上的实验结果表明该模型较现有模型...
        Saved in:
      
    
          | Published in | 计算机工程与应用 Vol. 60; no. 5; pp. 112 - 121 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            兰州交通大学 电子与信息工程学院,兰州 730070
    
        01.03.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1002-8331 | 
| DOI | 10.3778/j.issn.1002-8331.2210-0231 | 
Cover
| Abstract | TP391; 面向特定方面的用户评论细粒度情感分析是当前自然语言处理领域一个热门的研究话题,针对评论语句在内容表达和句法结构上的灵活性,综合运用词性、句法、语义等知识增强评论语句的特征表示是当前一种主要的研究思路.基于此,提出一种多视图融合表示的图卷积网络模型.该模型通过自注意力和特定方面注意力,学习得到评论语句基于上下文的增强表示;分别利用句法依赖信息和词共现信息,通过图卷积操作得到评论语句基于句法和基于语义的两种不同表示;在获得三种不同视图表示的基础上设计了一种分层融合方式,通过对三种表示的不同组合与卷积操作实现不同视图表示间的信息共享与互补.五个公开数据集上的实验结果表明该模型较现有模型取得了更好的性能. | 
    
|---|---|
| AbstractList | TP391; 面向特定方面的用户评论细粒度情感分析是当前自然语言处理领域一个热门的研究话题,针对评论语句在内容表达和句法结构上的灵活性,综合运用词性、句法、语义等知识增强评论语句的特征表示是当前一种主要的研究思路.基于此,提出一种多视图融合表示的图卷积网络模型.该模型通过自注意力和特定方面注意力,学习得到评论语句基于上下文的增强表示;分别利用句法依赖信息和词共现信息,通过图卷积操作得到评论语句基于句法和基于语义的两种不同表示;在获得三种不同视图表示的基础上设计了一种分层融合方式,通过对三种表示的不同组合与卷积操作实现不同视图表示间的信息共享与互补.五个公开数据集上的实验结果表明该模型较现有模型取得了更好的性能. | 
    
| Abstract_FL | The fine-grained sentiment analysis of user comments for specific aspects is a popular research topic in the field of natural language processing.For the flexibility of comment statements in content expression and syntactic struc-ture,the integrated use of lexical,syntactic and semantic knowledge to enhance the feature representation of comment statements is a major research idea at present.Based on this,a graph convolutional network model for multi-view fusion representation is proposed in this paper.First,the model learns to obtain context-based enhanced representations of com-ment statements through self-attention and aspect-specific attention.Second,two different representations of comment utterances based on syntax and semantics are obtained through graph convolution operations using syntactic dependency information and word co-occurrence information,respectively.Finally,a hierarchical fusion approach is designed based on obtaining three different view representations to achieve information sharing and complementarity among different view representations by combining and convolving the three representations.Experimental results on five publicly avail-able datasets show that the model achieves better performance than existing models. | 
    
| Author | 徐学锋 韩虎  | 
    
| AuthorAffiliation | 兰州交通大学 电子与信息工程学院,兰州 730070 | 
    
| AuthorAffiliation_xml | – name: 兰州交通大学 电子与信息工程学院,兰州 730070 | 
    
| Author_FL | HAN Hu XU Xuefeng  | 
    
| Author_FL_xml | – sequence: 1 fullname: XU Xuefeng – sequence: 2 fullname: HAN Hu  | 
    
| Author_xml | – sequence: 1 fullname: 徐学锋 – sequence: 2 fullname: 韩虎  | 
    
| BookMark | eNo9jb1KA0EURqeIYIx5CTuLXe_MzezMlBL8g4CN1mFnZzZkkQk4iGxtDIJNbCwSjEQCySuYwrfZ3fgWBhSr73CK8-2Rmhs4S8gBhRCFkEdZ2PfehRSABRKRhoxRCIAhrZH6v90lTe_7GjhFwQWqOsHvt49i_FK-fm6hWi_Lh8dy-F48jcrZuJoMi8VksxwV06_NfFUt1uVqXsye98lOGt942_zbBrk-Pblqnwedy7OL9nEn8BQiGnCjLMfYWqYUogEQKdda88RwFiUoUUkZWVS0JQwgVZFW3BijU57IWAqDDXL4272PXRq7Xjcb3N267WM381kvyfOcAWsBB0rxBzVPXSQ | 
    
| ClassificationCodes | TP391 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.3778/j.issn.1002-8331.2210-0231 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitle_FL | Multi-View Representation Model for Aspect-Level Sentiment Analysis | 
    
| EndPage | 121 | 
    
| ExternalDocumentID | jsjgcyyy202405011 | 
    
| GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (62166024)  | 
    
| GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGT U1G U5S  | 
    
| ID | FETCH-LOGICAL-s1061-5d9e53aee29933d007f5bbb5cd526c3839886e39147d03196b95dddbf5c8a87d3 | 
    
| ISSN | 1002-8331 | 
    
| IngestDate | Thu May 29 04:10:55 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Issue | 5 | 
    
| Keywords | 注意力机制 multiview representation attention mechanism 多视图表示 graph convolution network 图卷积网络 方面级情感分析 aspect-level sentiment analysis  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1061-5d9e53aee29933d007f5bbb5cd526c3839886e39147d03196b95dddbf5c8a87d3 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | wanfang_journals_jsjgcyyy202405011 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-03-01 | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 计算机工程与应用 | 
    
| PublicationTitle_FL | Computer Engineering and Applications | 
    
| PublicationYear | 2024 | 
    
| Publisher | 兰州交通大学 电子与信息工程学院,兰州 730070 | 
    
| Publisher_xml | – name: 兰州交通大学 电子与信息工程学院,兰州 730070 | 
    
| SSID | ssib051375739 ssib001102935 ssj0000561668 ssib023646291 ssib057620132  | 
    
| Score | 1.9686687 | 
    
| Snippet | TP391; 面向特定方面的用户评论细粒度情感分析是当前自然语言处理领域一个热门的研究话题,针对评论语句在内容表达和句法结构上的灵活性,综合运用词性、句法、语义等知识增强... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 112 | 
    
| Title | 面向方面级情感分析的多视图表示模型 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/jsjgcyyy202405011 | 
    
| Volume | 60 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1002-8331 databaseCode: ADMLS dateStart: 20200501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620132 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThRBsIPLRQ_GZ3yHGPtEdp1Xv44zy2yIES9CwsGEzEzPQDisibsclqtITLzgxQNGDIYEfkEO_s3u4l9Y1dPsjIIJetlUuqrr0TW9VT3pqiHkiadFINNcNVMO2y3QDCDt6qZmOucZnDiY6ba_8ILPLwXPltny1KVXtVtLG_20lW2eW1fyP16FMfArVsn-g2cnTGEAYPAv_IKH4fdCPqaxomqOhh6NGVUOVS6NOVWcRqqGEjQKaSgQJX0qmQECqjo4S0oquZkVIwcgViFiARUGCMcS5yINiIhoFJsRl4YSiYEGmMP00AwiTUxlVE95DX1ssAIBZTRRbTOR0QgGmUGBJhGNgSEAsUGFVAVGpQCwp4-GwZTKgo5gIje2BqdiDYlC80KFspUCdvWXG15Q3e4yj6NZB2DqWH3AhNjYBdYBJ7wLEtoFwWW0UmetZhGzQ6jRRHsAOsZmWGtYrM55ptbVV-gqr31WlVls9V9-9cQGDxNdTivQbHThTm0XsVqocO318TLrcMs68T8Dmi-ENAENBbQmAlqeh3cYPCvq94bh67311WwwGOB6OszBwvdpD2Ke0yDT4dzC85dVugzZparSZfyWAPeq3knM9QUTVddYhkxsp0_bO5-73FabWs3Kvr6o9tO_K20K5LpF0l2t5XKL18hVewibCcsddZ1Mba7dIFdqrTlvEv_nl2_DnY-jT98BGB8fjt6-G219Hb7fHu3tjHe3hge7J4fbw88_TvaPxgfHo6P94d6HW2SpEy-255v2AyPNHr4JaTKtcuYneQ45me9r8GbB0jRlmWYez3w4O0jJc1-5gdBY7cdTxbTWacEymUih_duk0X3dze-QmQJOPq4nEpGoIkgTOMjwwvf8QjCumVM4d8lja_KK_QPprZxx1L2LEN0nl6ud8oA0-m828oeQGPfTR9a_vwBzRYWm | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E6%96%B9%E9%9D%A2%E7%BA%A7%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90%E7%9A%84%E5%A4%9A%E8%A7%86%E5%9B%BE%E8%A1%A8%E7%A4%BA%E6%A8%A1%E5%9E%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E5%BE%90%E5%AD%A6%E9%94%8B&rft.au=%E9%9F%A9%E8%99%8E&rft.date=2024-03-01&rft.pub=%E5%85%B0%E5%B7%9E%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6+%E7%94%B5%E5%AD%90%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%85%B0%E5%B7%9E+730070&rft.issn=1002-8331&rft.volume=60&rft.issue=5&rft.spage=112&rft.epage=121&rft_id=info:doi/10.3778%2Fj.issn.1002-8331.2210-0231&rft.externalDocID=jsjgcyyy202405011 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcyyy%2Fjsjgcyyy.jpg |