基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测

TG58; 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测.首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除"虚假分量"后计算表征轧辊磨削颤振的时域特征.然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征.最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测.结果...

Full description

Saved in:
Bibliographic Details
Published in金刚石与磨料磨具工程 Vol. 44; no. 1; pp. 73 - 84
Main Authors 朱欢欢, 迟玉伦, 张梦梦, 熊力, 应晓昂
Format Journal Article
LanguageChinese
Published 上海工程技术大学 高职学院, 上海 200437%上海理工大学 机械工程学院, 上海 200093 01.02.2024
上海市高级技工学校 制造工程系, 上海 200437
Subjects
Online AccessGet full text
ISSN1006-852X
DOI10.13394/j.cnki.jgszz.2022.0198

Cover

Abstract TG58; 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测.首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除"虚假分量"后计算表征轧辊磨削颤振的时域特征.然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征.最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测.结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为 0.776 5 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性.
AbstractList TG58; 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测.首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除"虚假分量"后计算表征轧辊磨削颤振的时域特征.然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征.最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测.结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为 0.776 5 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性.
Abstract_FL To address the issue of partial feature loss in the single processing method within the time-frequency do-main for roll grinding chatter,a combined time-frequency domain method is proposed to process signal feature.An in-telligent algorithm is used to achieve online prediction of roll grinding chatter.Firstly,the empirical mode decomposi-tion(EMD)method is utilized to decompose the vibration sensor signals,extrating the intrinsic mode function(IMF)while removing"spurious components"to calculate time domain characteristics associated with roll grinding chatter.Then,wavelet packet energy entropy is used to solve the frequency band node energy entropy values of acoustic emis-sion sensor signals,obtaining frequency domain features characterizing the roll grinding chatter.Finally,the time-fre-quency domain features after dimension reduction is substituted into the intelligent algorithm model for online predic-tion of the roller grinding process.The results show that the the LV-SVM model achieves an average classification ac-curacy of 92.75%,with an average response time of 0.776 5 s.This verifies the validity of EMD and LV-SVM based on wavelet packet energy entropy in the time-frequency domain for online prediction of roller grinding chatter.
Author 朱欢欢
张梦梦
应晓昂
迟玉伦
熊力
AuthorAffiliation 上海市高级技工学校 制造工程系, 上海 200437;上海工程技术大学 高职学院, 上海 200437%上海理工大学 机械工程学院, 上海 200093
AuthorAffiliation_xml – name: 上海市高级技工学校 制造工程系, 上海 200437;上海工程技术大学 高职学院, 上海 200437%上海理工大学 机械工程学院, 上海 200093
Author_FL CHI Yulun
YING Xiaoang
ZHU Huanhuan
ZHANG Mengmeng
XIONG Li
Author_FL_xml – sequence: 1
  fullname: ZHU Huanhuan
– sequence: 2
  fullname: CHI Yulun
– sequence: 3
  fullname: ZHANG Mengmeng
– sequence: 4
  fullname: XIONG Li
– sequence: 5
  fullname: YING Xiaoang
Author_xml – sequence: 1
  fullname: 朱欢欢
– sequence: 2
  fullname: 迟玉伦
– sequence: 3
  fullname: 张梦梦
– sequence: 4
  fullname: 熊力
– sequence: 5
  fullname: 应晓昂
BookMark eNotj81KAlEYhs_CIDOvoQuImb7vnHHOnGWY_YDRpqCdzM854qQjNETkNrMy0X0EwRTkriCEEKybcRznLhoo3sUL7-J5edZILmgHkpANBB0ZE8aWr7vBWUP362Gno1OgVAcUVo7kEcDUrBI9XSXFMGw4UELGTaQ8Tyrx83Q-HVYOd-K7Xno7mn8N44_R4jOKBzfL61m2JL1J8thdzt6W3_3kZRzf99PodTF4j5_GyfQnjbqLycM6WVF2M5TF_y6Qk93KcXlfqx7tHZS3q1qIYILGDekpZI4BhmV5jmCcK-VJzkwHmTBtDyyXSXQdV4AtPEtIJaiLDqBiaFPJCmTzj3tpB8oO6jW_fXEeZI-1TPqq1Wz5dTcTNwCzsF91CWrR
ClassificationCodes TG58
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13394/j.cnki.jgszz.2022.0198
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL On line prediction of roll grinding chatter based on EMD component and wavelet packet energy entropy
EndPage 84
ExternalDocumentID jgsymlmjgc202401010
GroupedDBID -03
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1060-74edf13b40488db9377ffde736b1396ad08c3e1cbc90a9d89ef92c1b01f31a2e3
ISSN 1006-852X
IngestDate Thu May 29 03:59:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords least squares support vector machine(LS-SVM)
小波包能量熵
roll grinding chatter
EMD分解
固有模态函数
最小二乘支持向量机
EMD decomposition
wavelet energy entropy
轧辊磨削颤振
intrinsic mode function(IMF)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1060-74edf13b40488db9377ffde736b1396ad08c3e1cbc90a9d89ef92c1b01f31a2e3
PageCount 12
ParticipantIDs wanfang_journals_jgsymlmjgc202401010
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle 金刚石与磨料磨具工程
PublicationTitle_FL Diamond & Abrasives Engineering
PublicationYear 2024
Publisher 上海工程技术大学 高职学院, 上海 200437%上海理工大学 机械工程学院, 上海 200093
上海市高级技工学校 制造工程系, 上海 200437
Publisher_xml – name: 上海工程技术大学 高职学院, 上海 200437%上海理工大学 机械工程学院, 上海 200093
– name: 上海市高级技工学校 制造工程系, 上海 200437
SSID ssib051376127
ssib002263492
ssj0039779
ssib023167358
ssib008143579
ssib001129951
Score 2.3905354
Snippet TG58; 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测.首先,利...
SourceID wanfang
SourceType Aggregation Database
StartPage 73
Title 基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测
URI https://d.wanfangdata.com.cn/periodical/jgsymlmjgc202401010
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  issn: 1006-852X
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0039779
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNR60YP4id_00DlJ1kxmkswck22WItRTC72VJJtUa7uCbQ_u1Vq1lvYuglAFe1OQghSqf6bbbf-F771ksynmUIVlmH3z5s37yMybN5mZGMZ4zCN4cNzUzLiVmFJn0ozjlJupbifQA-MkEngaeeqxOzkjH806syOj05VdS6srcSPp1p4r-R-rAgzsiqdk_8GyJVEAQB7sCylYGNIz2ZiFDtMtFvgslJiqMJyaQKBSTLks1AxCfdWiUoCEWBRYBHFZIJhvE3KTKYeFgCBYMFGp5SGRwMGMBuIScQDB9ygTMuVjkQ90FNHRBNFI1pfYBFD2W8Rkk3A8ZDJoFTiKcIC-CqpT5IIBzQtBNLWCYoqKIGW7LtPw06c5ATE9EhaAxD_AVflyiSo1WcAx4zdJDUVmiKKQUZ1rIUTZsG1AcYcoDgEsqgwiu2VmiEIqRK04mOqgushiy8G-7KJbDMTzC73UyUBq9XF_Si5Erl9Qt0_IPpjHfUAKDphWZFWOdhiUYZEm9UPf-rtBumES70dw6pgBM1j0YJVc1TSd69YvlAGPW40MZ2fGyr9sWfhNXJhSjj1bdaz5xZ6nBpDcS-YfrxnMt2StJxdCS3LlSefZ08bC_HK32wDL2A2ISdRw8lJuKQWMl0uLSwvzCdoPb060zhnnbfD1VmWhhYIEmOLqyrtwCEDwis7yv8IQYvju2sa7IsRw74DDwSdzu1zWwQhK056KQgXFLlIU4GE9-3RAsJNFnfnKXHb6snGpCELH_HxEuWKMdJ9cNS5Wria9ZoS9T_uH-1swnvTerp-82T78udX7vn30Y6e3-fr41QFA-ut7_Q9rxwdfj39t9D_v9t5tnOx8Odr81vu429__fbKzdrT3_rox0wqnm5Nm8ckVc5lbrmV6Mm1nXMQSHXs7htjFy7J2CqN5DKGiG7UtlYiUJ3GirUi3lU4zbSc8tngmeGSn4oYx2nneSW8aY16mBYQ3tsejSKaxjLUSUkVCpNLJMhHfMsYLJcwVQ-ryXI0Rb58N7Y5xYdhv7xqjKy9W03sQLqzE98n6fwCgvM3d
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EEMD%E5%88%86%E9%87%8F%E4%B8%8E%E5%B0%8F%E6%B3%A2%E5%8C%85%E8%83%BD%E9%87%8F%E7%86%B5%E7%9A%84%E8%BD%A7%E8%BE%8A%E7%A3%A8%E5%89%8A%E9%A2%A4%E6%8C%AF%E5%9C%A8%E7%BA%BF%E9%A2%84%E6%B5%8B&rft.jtitle=%E9%87%91%E5%88%9A%E7%9F%B3%E4%B8%8E%E7%A3%A8%E6%96%99%E7%A3%A8%E5%85%B7%E5%B7%A5%E7%A8%8B&rft.au=%E6%9C%B1%E6%AC%A2%E6%AC%A2&rft.au=%E8%BF%9F%E7%8E%89%E4%BC%A6&rft.au=%E5%BC%A0%E6%A2%A6%E6%A2%A6&rft.au=%E7%86%8A%E5%8A%9B&rft.date=2024-02-01&rft.pub=%E4%B8%8A%E6%B5%B7%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6+%E9%AB%98%E8%81%8C%E5%AD%A6%E9%99%A2%2C+%E4%B8%8A%E6%B5%B7+200437%25%E4%B8%8A%E6%B5%B7%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C+%E4%B8%8A%E6%B5%B7+200093&rft.issn=1006-852X&rft.volume=44&rft.issue=1&rft.spage=73&rft.epage=84&rft_id=info:doi/10.13394%2Fj.cnki.jgszz.2022.0198&rft.externalDocID=jgsymlmjgc202401010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjgsymlmjgc%2Fjgsymlmjgc.jpg