面向强稀疏性移动社交网络的链路预测深度学习方法

链路预测是利用深度学习技术分析网络数据,挖掘网络中潜在的节点关系,通常应用于网络安全、信息挖掘等领域.通过预测网络中节点间的链路,可以识别社交工程攻击、欺诈行为和隐私泄露风险.但移动社交网络的拓扑结构随时间变化,链路稀疏,影响预测准确性.为了解决移动社交网络中链路预测的强稀疏性问题,提出基于深度学习的预测方法,即面向强稀疏性移动社交网络的链路预测深度学习方法(deep learning-based method for mobile social networks with strong sparsity for link prediction,DLMSS-LP).该方法综合运用了图自编码器(...

Full description

Saved in:
Bibliographic Details
Published in网络与信息安全学报 Vol. 10; no. 3; pp. 117 - 129
Main Authors 何亚迪, 刘林峰
Format Journal Article
LanguageChinese
Published 南京邮电大学计算机学院,江苏 南京 210023 25.06.2024
Subjects
Online AccessGet full text
ISSN2096-109X
DOI10.11959/j.issn.2096-109x.2024044

Cover

Abstract 链路预测是利用深度学习技术分析网络数据,挖掘网络中潜在的节点关系,通常应用于网络安全、信息挖掘等领域.通过预测网络中节点间的链路,可以识别社交工程攻击、欺诈行为和隐私泄露风险.但移动社交网络的拓扑结构随时间变化,链路稀疏,影响预测准确性.为了解决移动社交网络中链路预测的强稀疏性问题,提出基于深度学习的预测方法,即面向强稀疏性移动社交网络的链路预测深度学习方法(deep learning-based method for mobile social networks with strong sparsity for link prediction,DLMSS-LP).该方法综合运用了图自编码器(graph auto-encoder,GAE)、特征矩阵聚合技术以及多层长短期记忆网络(long short-term memory,LSTM),旨在降低了模型的学习成本,更有效地处理高维和非线性的网络结构,并且捕捉移动社交网络中的时序动态变化,进而增强模型对现有链路生成可能性的预测能力.对比其他方法在AUC(area under curve)和ER(error rate)指标上有明显提升,体现了模型对不确定链路预测的高准确率和强鲁棒性.
AbstractList 链路预测是利用深度学习技术分析网络数据,挖掘网络中潜在的节点关系,通常应用于网络安全、信息挖掘等领域.通过预测网络中节点间的链路,可以识别社交工程攻击、欺诈行为和隐私泄露风险.但移动社交网络的拓扑结构随时间变化,链路稀疏,影响预测准确性.为了解决移动社交网络中链路预测的强稀疏性问题,提出基于深度学习的预测方法,即面向强稀疏性移动社交网络的链路预测深度学习方法(deep learning-based method for mobile social networks with strong sparsity for link prediction,DLMSS-LP).该方法综合运用了图自编码器(graph auto-encoder,GAE)、特征矩阵聚合技术以及多层长短期记忆网络(long short-term memory,LSTM),旨在降低了模型的学习成本,更有效地处理高维和非线性的网络结构,并且捕捉移动社交网络中的时序动态变化,进而增强模型对现有链路生成可能性的预测能力.对比其他方法在AUC(area under curve)和ER(error rate)指标上有明显提升,体现了模型对不确定链路预测的高准确率和强鲁棒性.
Abstract_FL Link prediction,the process of uncovering potential relationships between nodes in a network through the use of deep learning techniques,is commonly applied in fields such as network security and information mining.It has been utilized to identify social engineering attacks,fraudulent activities,and privacy breach risks by predicting links between nodes within a network.However,the topology of mobile social networks is subject to change over time,and the sparsity of links affects the accuracy of predictions.To address the issue of strong sparsity in link prediction for mobile social networks,a deep learning-based prediction method named DLMSSLP(deep learning-based method for mobile social networks with strong sparsity for link prediction)was developed.This method was designed to employ a combination of a Graph Auto-Encoder(GAE),feature matrix aggregation,and multi-layer long short-term memory networks(LSTM).It aimed to reduce the learning cost of the model,process high-dimensional and nonlinear network structures more effectively,and capture the temporal dynamics within mobile social networks,thereby enhancing the model's predictive capability for the generation of existing links.When compared to other methods,DLMSSLP demonstrated significant improvements in AUC and ER metrics,showcasing the model's high accuracy and robustness in predicting uncertain links.
Author 刘林峰
何亚迪
AuthorAffiliation 南京邮电大学计算机学院,江苏 南京 210023
AuthorAffiliation_xml – name: 南京邮电大学计算机学院,江苏 南京 210023
Author_FL LIU Linfeng
HE Yadi
Author_FL_xml – sequence: 1
  fullname: HE Yadi
– sequence: 2
  fullname: LIU Linfeng
Author_xml – sequence: 1
  fullname: 何亚迪
– sequence: 2
  fullname: 刘林峰
BookMark eNrjYmDJy89LZWBQNDTQMzS0NLXUz9LLLC7O0zMysDTTNTSwrACyjEwMTExYGDhhYhEcDLzFxZlJBqYW5qaWQGlOBteXcxc9nTDx6Z5dz1c0PJ_W_6xh-fPlu592rXi-ZN-TXUue7534fPec57NaXk7e92L7-peLWp5t7X62fePTXcuerl32ZOeCZ9N2Pts8lYeBNS0xpziVF0pzM4S6uYY4e-j6-Lt7Ojv66BYbGpha6lpaWiSZmBunGqSapKamJSYbGpokpZgmWaSaWiSbm1saWiYZWSZaWKSkGJobJ6cZmxhaWponJyaaGxikmqYlmxkYczNoQcwtT8xLS8xLj8_KLy3KA9oYX55TWVGRWFiRBPa1sYGBpTEAl_FsfQ
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11959/j.issn.2096-109x.2024044
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Deep learning-based method for mobile social networks with strong sparsity for link prediction
EndPage 129
ExternalDocumentID wlyxxaqxb202403009
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1059-998b473e0e4eefac114bd5b8e58c77919b29a88dd173cf341997caa700e5fc603
ISSN 2096-109X
IngestDate Thu May 29 03:56:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords 移动社交网络
strong sparsity
deep learning
深度学习
link prediction
mobile social networks
链路预测
强稀疏性
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1059-998b473e0e4eefac114bd5b8e58c77919b29a88dd173cf341997caa700e5fc603
PageCount 13
ParticipantIDs wanfang_journals_wlyxxaqxb202403009
PublicationCentury 2000
PublicationDate 2024-06-25
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-25
  day: 25
PublicationDecade 2020
PublicationTitle 网络与信息安全学报
PublicationTitle_FL Chinese Journal of Network and Information Security
PublicationYear 2024
Publisher 南京邮电大学计算机学院,江苏 南京 210023
Publisher_xml – name: 南京邮电大学计算机学院,江苏 南京 210023
SSID ssib058759024
Score 2.388057
Snippet 链路预测是利用深度学习技术分析网络数据,挖掘网络中潜在的节点关系,通常应用于网络安全、信息挖掘等领域.通过预测网络中节点间的链路,可以识别社交工程攻击、欺诈行为和隐...
SourceID wanfang
SourceType Aggregation Database
StartPage 117
Title 面向强稀疏性移动社交网络的链路预测深度学习方法
URI https://d.wanfangdata.com.cn/periodical/wlyxxaqxb202403009
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2096-109X
  databaseCode: M~E
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib058759024
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9RQFA61grgRRcU3Fb2rkjGPm_tYJjMZilBXLXRX8tSFjGhbHLuQLrrShVaxC1GQUtpuRESktNX-ms7E-ReeczIvbIXqZjhz8513ch8h517DuM21neSptkxYOiQmTz1lxkILkwslZCqTLJVYKDx5T0xM87sz3szIiTdDXy0tzMeVZPHIupL_ySq0QV6xSvYfMtsXCg1AQ37hFzIMv8fKMQs10zXmOyz0mLaYtpEIqizwWSiZr_A7BiC0YKrOQoF_fUmXJAsCBCsfYdjCWRCykCMv0NAS1EggIXWV5PhMcVLqElixABjr2AI24CXBApAZEAGMpT0gUCDh14gAFYC3EAOGAY1gl5WnYPYmykcZAIzgUWlknfk2eWSTASA8ZEqTRx551FcnyEevd2cRNwj2ur6CT-gHyPMHEJCimFZkYsi0JDfAZ2v4JYnD8WOusqCabmviqxG8DGMVI6MctA2jxzE4aBinLPQtVAjwyVO_1CbQX0xiHwMxpyA7VQqXzXQdGSHUqj5-WPG4g5veuoNu3oFFJAyGdKDwYEyyhp49d2iAsctK1-5cxS7fFh0eBrWnaRxEDZWehmYFQ2OV-23-scv404fPms3ocTMmiEs1sScdGCnxOJTJ52Gvj_ZgfastOiu6b_gp42ZP6Z2_qaSauEYeNe4PTd-mzhpnuuuuMb98iM4ZI4sPzhth5-Na6_VK68dusbVUrL5qL20Wm3utF1vF-v7B7nrxc6XY-1C8X-683f-1_aWzttz-_rK9_bW1u9H6vHGw86m9utP-9u6CMV0Pp6oTZvdcEXMOVxOm1irm0s2sjGdZHiW2zePUi1XmqURKbevY0ZFSaWpLN8lxw0MtkyiSlpV5eSIs96Ix2njUyC4ZYzlXroBu0JWu4LnSSrqulzlOksLcORLOZeNW1-3Zbr8xN3s41FeOhbpqnB7c2teM0fknC9l1mBHPxzcoRb8BHIiO4A
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E5%BC%BA%E7%A8%80%E7%96%8F%E6%80%A7%E7%A7%BB%E5%8A%A8%E7%A4%BE%E4%BA%A4%E7%BD%91%E7%BB%9C%E7%9A%84%E9%93%BE%E8%B7%AF%E9%A2%84%E6%B5%8B%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95&rft.jtitle=%E7%BD%91%E7%BB%9C%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%AE%89%E5%85%A8%E5%AD%A6%E6%8A%A5&rft.au=%E4%BD%95%E4%BA%9A%E8%BF%AA&rft.au=%E5%88%98%E6%9E%97%E5%B3%B0&rft.date=2024-06-25&rft.pub=%E5%8D%97%E4%BA%AC%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E5%8D%97%E4%BA%AC+210023&rft.issn=2096-109X&rft.volume=10&rft.issue=3&rft.spage=117&rft.epage=129&rft_id=info:doi/10.11959%2Fj.issn.2096-109x.2024044&rft.externalDocID=wlyxxaqxb202403009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fwlyxxaqxb%2Fwlyxxaqxb.jpg