Research and application of talent training evaluation model based on deep learning

The application of deep learning technology in target detection algorithm significantly improves the performance of the algorithm. Based on the traditional target detection algorithm, the task of target detection is summarized, including evaluation index, open data set, algorithm framework and the d...

Full description

Saved in:
Bibliographic Details
Main Author Hong, Wang
Format Conference Proceeding
LanguageEnglish
Published SPIE 16.06.2023
Online AccessGet full text
ISBN9781510666252
1510666257
ISSN0277-786X
DOI10.1117/12.2682979

Cover

Abstract The application of deep learning technology in target detection algorithm significantly improves the performance of the algorithm. Based on the traditional target detection algorithm, the task of target detection is summarized, including evaluation index, open data set, algorithm framework and the defects of traditional algorithm. Therefore, taking the needs of object detection as the fulcrum, the training goal of research travel talents is clarified in this paper. There are two classification criteria: whether there is an explicit regional suggestion and whether a prior anchor frame is defined. The existing target detection algorithms are classified, and the evolutionary route of each algorithm is reviewed, and the mechanism, advantages, limitations and application scenarios of each method are summarized. The performance of representative target detection algorithms in open data sets is compared and analyzed.
AbstractList The application of deep learning technology in target detection algorithm significantly improves the performance of the algorithm. Based on the traditional target detection algorithm, the task of target detection is summarized, including evaluation index, open data set, algorithm framework and the defects of traditional algorithm. Therefore, taking the needs of object detection as the fulcrum, the training goal of research travel talents is clarified in this paper. There are two classification criteria: whether there is an explicit regional suggestion and whether a prior anchor frame is defined. The existing target detection algorithms are classified, and the evolutionary route of each algorithm is reviewed, and the mechanism, advantages, limitations and application scenarios of each method are summarized. The performance of representative target detection algorithms in open data sets is compared and analyzed.
Author Hong, Wang
Author_xml – sequence: 1
  givenname: Wang
  surname: Hong
  fullname: Hong, Wang
  organization: Ma'anshan Teachers College (China)
BookMark eNotkFtLw0AUhBesYFv74i_YZyF1z26yl0cp3qAgeAHfwtmcU43ETchGf78t7dMwzPANzELMUp9YiCtQawBwN6DX2nodXDgTq-A8VKCstbrSMzFX2rnCeftxIRY5fyulfeXCXLy-cGYcmy-JiSQOQ9c2OLV9kv1OTthxmuQ0Ypva9Cn5D7vfY_rTE3cyYmaSe0vMg-z2oEPvUpzvsMu8OulSvN_fvW0ei-3zw9PmdltkUFUoLLIqma2PHsGDjYCm8aiCimUkbghpR1xSIKqMR1M1EQxRjEZ5a0syS3F95Oah5XoY-4aZ9vu5BlUfLqlB16dLzD8y4FaF
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.2682979
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Patnaik, Srikanta
Editor_xml – sequence: 1
  givenname: Srikanta
  surname: Patnaik
  fullname: Patnaik, Srikanta
  organization: Indian Institute of Technology Bhubaneswar (India)
EndPage 127030W-6
ExternalDocumentID 10_1117_12_2682979
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
UT2
ID FETCH-LOGICAL-s1059-6ae04ee68b8a1816b1a3c8a090b4bdecdadfde4d9dd538a35cb13ddbb308664d3
ISBN 9781510666252
1510666257
ISSN 0277-786X
IngestDate Wed Jul 26 04:25:41 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1059-6ae04ee68b8a1816b1a3c8a090b4bdecdadfde4d9dd538a35cb13ddbb308664d3
Notes Conference Date: 2023-03-03|2023-03-05
Conference Location: Hong Kong, China
ParticipantIDs spie_proceedings_10_1117_12_2682979
PublicationCentury 2000
PublicationDate 20230616
PublicationDateYYYYMMDD 2023-06-16
PublicationDate_xml – month: 6
  year: 2023
  text: 20230616
  day: 16
PublicationDecade 2020
PublicationYear 2023
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.2249963
Snippet The application of deep learning technology in target detection algorithm significantly improves the performance of the algorithm. Based on the traditional...
SourceID spie
SourceType Publisher
StartPage 127030W
Title Research and application of talent training evaluation model based on deep learning
URI http://www.dx.doi.org/10.1117/12.2682979
Volume 12703
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFICDjhc9uYy4E9CbdOykadIexQUVRwSV8TYkeal4GcUZL_56X9q0qRuol9CG0u1r895L3kLInlQCFJNFlIEpIp5DHqlEYyPzVJsCclNm2x9cibM7fnGf3oeKn2V0yVT3zNu3cSX_oYp9yNVFyf6BbHNS7MBt5IstEsb2k_L7rZypveaqhKthJbpc91dOnDQVIFpZvaviN_tOfIFbKgBrn-viEQ8NZe-pO1S-z08MMFekIariFr07xflHYxFluzNWWNqeT3QruDIriwmGAZHJOGkNauV-PGzJSN8TiR8G4TKMn_WYcIG7eRA1jQNgZXrIUZ-N_EGzZFZKHJbmDo8HlzeNzZylVbrE-j5dbF79HNKn7Gqey6efxRMfhKs7F73nR9vSGm4XSTfEU9LrhuASmbHjZbLQSgW5Qm5qmBRh0hZM-lTQCiatYdIAk5YwaQmT4q6DSWuYXXJ3enJ7dBb5ghfRxKm5kVA25taKTGcKNS-h-yoxmYrzWHMN1oCCAiyHHADllEpSo_sJgNYJGqaCQ7JKOuOnsV0jFP81WWTcSMWAcxZrK5iNDWrf4GKd--tk172VUfh8J6OvUDZ-ddQmmQ_f3xbpTF9e7TaqalO943G-AyxONyk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Research+and+application+of+talent+training+evaluation+model+based+on+deep+learning&rft.au=Hong%2C+Wang&rft.date=2023-06-16&rft.pub=SPIE&rft.isbn=9781510666252&rft.issn=0277-786X&rft.volume=12703&rft.spage=127030W&rft.epage=127030W-6&rft_id=info:doi/10.1117%2F12.2682979&rft.externalDocID=10_1117_12_2682979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon