基于GPR模型的用户量预测优化方法
TP391.7; 高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点.针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法.在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估.实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(ro...
        Saved in:
      
    
          | Published in | 系统工程与电子技术 Vol. 46; no. 8; pp. 2721 - 2729 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            中国科学院大学集成电路学院,北京 100049%中国科学院微电子研究所通信与信息工程研发中心,北京 100029
    
        01.08.2024
     中国科学院微电子研究所通信与信息工程研发中心,北京 100029  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1001-506X | 
| DOI | 10.12305/j.issn.1001-506X.2024.08.19 | 
Cover
| Abstract | TP391.7; 高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点.针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法.在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估.实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R2这4个评估指标方面均有提升,其中MBE至少提升了 43.3%. | 
    
|---|---|
| AbstractList | TP391.7; 高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点.针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法.在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估.实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R2这4个评估指标方面均有提升,其中MBE至少提升了 43.3%. | 
    
| Abstract_FL | Gaussian process regression(GPR)is a non-parametric Bayesian regression method based on Gaussian processes.It is flexible in adapting to different types of data,and it is used to model and predict complex relationships between different types of data.It has strong fitting capabilities and good generalization abilities.A user quantity prediction optimization method based on GPR is proposed to tackle the problem of real-time user quantity prediction in the context of massive user scenario.Building upon the sliding window method for data processing,the method selects a suitable kernel function and uses k-fold cross-validation to determine the optimal hyperparameter combination for training the GPR model,which enables the real-time prediction of online user quantity.Finally,the performance of the model is evaluated.The experimental results demonstrate that compared with the traditional approach that uses half of the variance of the output data in the training set as the signal noise estimator,the proposed method has higher prediction accuracy and improvements in the four following evaluation metrics of root mean square(RMS),mean absolute error(MAE),mean bias error(MBE)and determination coefficient R2 on the test set.Specifically,the MBE shows an improvement of at least 43.3%. | 
    
| Author | 祝文晶 李金海 杨超三 刘学浩 宋玉 刘文学  | 
    
| AuthorAffiliation | 中国科学院微电子研究所通信与信息工程研发中心,北京 100029;中国科学院大学集成电路学院,北京 100049%中国科学院微电子研究所通信与信息工程研发中心,北京 100029 | 
    
| AuthorAffiliation_xml | – name: 中国科学院微电子研究所通信与信息工程研发中心,北京 100029;中国科学院大学集成电路学院,北京 100049%中国科学院微电子研究所通信与信息工程研发中心,北京 100029 | 
    
| Author_FL | LIU Xuehao ZHU Wenjing LI Jinhai LIU Wenxue YANG Chaosan SONG Yu  | 
    
| Author_FL_xml | – sequence: 1 fullname: LIU Xuehao – sequence: 2 fullname: LIU Wenxue – sequence: 3 fullname: YANG Chaosan – sequence: 4 fullname: ZHU Wenjing – sequence: 5 fullname: SONG Yu – sequence: 6 fullname: LI Jinhai  | 
    
| Author_xml | – sequence: 1 fullname: 刘学浩 – sequence: 2 fullname: 刘文学 – sequence: 3 fullname: 杨超三 – sequence: 4 fullname: 祝文晶 – sequence: 5 fullname: 宋玉 – sequence: 6 fullname: 李金海  | 
    
| BookMark | eNo9T8tKAzEUzaKCtfYvXAkT703mlaUUrUJBEQV3JZlkSgdJwSg-1gWFim60iAtFV92LiMXP6UzpXzhFcXU4h8N5LJGK7VlDyAoCRcYhWMto1zlLEQC9AMJDyoD5FGKKokKq__IiqTvXVRAgjwKI_Crx8pfxZHzb3N0rRq_582D61J_ej4rrz9nV3eytX3wMJt-P-c2wGH4V7w_LZCGVR87U_7BGDjY39htbXmunud1Yb3kOIRAehkqC0gkwlWquWElCJXiUIviam9hwo02cytKh0Q85SzjI-SoRgpA-4zWy-pt7Jm0qbaed9U6PbdnYPj_pJBf6MnPzgxADCv4DCwpZYQ | 
    
| ClassificationCodes | TP391.7 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.12305/j.issn.1001-506X.2024.08.19 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitle_FL | Optimization method of user quantity prediction based on GPR model | 
    
| EndPage | 2729 | 
    
| ExternalDocumentID | xtgcydzjs202408019 | 
    
| GrantInformation_xml | – fundername: (地球观测与导航); (中国科学院“西部之光”人才培养引进计划) funderid: (地球观测与导航); (中国科学院“西部之光”人才培养引进计划)  | 
    
| GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S  | 
    
| ID | FETCH-LOGICAL-s1059-16ba0bdc02bfd3b2a0b6b937f104d3e8e3ede8fadc0d14632c30ab0519609a423 | 
    
| ISSN | 1001-506X | 
    
| IngestDate | Thu May 29 04:00:31 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | 高斯过程回归 Gaussian process regression(GPR) user quantity prediction 滑动窗口 交叉验证 用户量预测 cross-validation 超参数优化 sliding window hyperparameter optimization  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1059-16ba0bdc02bfd3b2a0b6b937f104d3e8e3ede8fadc0d14632c30ab0519609a423 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | wanfang_journals_xtgcydzjs202408019 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-01 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 系统工程与电子技术 | 
    
| PublicationTitle_FL | Systems Engineering and Electronics | 
    
| PublicationYear | 2024 | 
    
| Publisher | 中国科学院大学集成电路学院,北京 100049%中国科学院微电子研究所通信与信息工程研发中心,北京 100029 中国科学院微电子研究所通信与信息工程研发中心,北京 100029  | 
    
| Publisher_xml | – name: 中国科学院微电子研究所通信与信息工程研发中心,北京 100029 – name: 中国科学院大学集成电路学院,北京 100049%中国科学院微电子研究所通信与信息工程研发中心,北京 100029  | 
    
| SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237  | 
    
| Score | 2.4446254 | 
    
| Snippet | TP391.7; 高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 2721 | 
    
| Title | 基于GPR模型的用户量预测优化方法 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202408019 | 
    
| Volume | 46 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1001-506X databaseCode: ADMLS dateStart: 20180801 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620160 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNJQtiB7ET_ymYHOSqZOZZCY5ZnZnLWJFtIXeys5XxcMK7ha054JCRS9axIOip95FxOLPabf0X_heJjsz1VWql5BJXt5HXibvvZAPQmZDppI8EMzJ8G_iKswd6SWu46ahUmHGeCHwcPLC3WB-id9eFstTrUFj19LaMJlL1yeeK_kfrUIZ6BVPyf6DZiukUAB50C-koGFIj6RjGguqujTSNOaYyvjWvfs0DqiWVDNTG1MZ0TikCmq5yXCsBRgpaRTSWFEZUtnFjPYMTEAjYVoBzjZVEvFIyARYBWmkDIxPy3crx64tIofCyJCDFBiDhkBCCywBohYnZGLLCRACGN2hyjUsadx4gVTaVFdbjg19aRkBWB1YHrWaAGJYBJHGsDUI1HSM7CA4gIgxMw0shlmAqrFARgF4c3HE49XWvHI4W0RADns8olHHYAIJWYNlhZigi7GEY-2hqojKwGoF-6LqHaMk3Z2Ax2uPFRNa9ev2DWaCMeqJf-YpiqmeqBZo5WIhZrArDJfKKMqkqhx9XTPiKvVWJQDMrAC_joUKs8ABqNghnqG59P8spF3AKs0pbtgTrnmrsrK3dsm5nFdk03iG5WF564jBp5po5CFqFsbKI425isYcDgC8j9fa4MPXqD8drqbPsvVHA8_c6ufiVcHTHrgCbotM687CnQd1FIFOd2MVAiIU36-Pa3v41huroxZ8giHw6ihHMB_c8DqqEkiE4SpE6SBy8MjNm09jxo-R2bFYN_8ilDlW2C96_dWGB7x4ipy0oeuMLueh02Rq_eEZcqJxoelZ4ux93NndeQWz0Gj7096Hzf33G_tvtkcvvh08f33weWP0dXP3x7u9l1ujre-jL2_PkaVuvNied-yDLM4AwzCHBUnPTbLU9ZIi8xMPPoIE4puCuTzzc5n7eZbLogcQMMsHvpf6bg87BK-17EHgdp60-o_7-QUyE4Tc5YFI0VRwyQrlC5YWYC_cHksFDy6S61bYFTvhDlZ-V-GlI0FdJsfrueEKaQ2frOVXIZQYJtes6n8CZJ7Eig | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGPR%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%94%A8%E6%88%B7%E9%87%8F%E9%A2%84%E6%B5%8B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%88%98%E5%AD%A6%E6%B5%A9&rft.au=%E5%88%98%E6%96%87%E5%AD%A6&rft.au=%E6%9D%A8%E8%B6%85%E4%B8%89&rft.au=%E7%A5%9D%E6%96%87%E6%99%B6&rft.date=2024-08-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%A4%A7%E5%AD%A6%E9%9B%86%E6%88%90%E7%94%B5%E8%B7%AF%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100049%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%BE%AE%E7%94%B5%E5%AD%90%E7%A0%94%E7%A9%B6%E6%89%80%E9%80%9A%E4%BF%A1%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E7%A0%94%E5%8F%91%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100029&rft.issn=1001-506X&rft.volume=46&rft.issue=8&rft.spage=2721&rft.epage=2729&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2024.08.19&rft.externalDocID=xtgcydzjs202408019 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |