Improved sparrow search particle filtering target tracking algorithm

Aiming at the particle filtering algorithm's particle degradation and impoverishment easily lead to the decrease of filtering accuracy, which makes the target tracking accuracy and robustness decrease, a particle filtering algorithm based on the improved sparrow search algorithm (ISSA-PF) is pr...

Full description

Saved in:
Bibliographic Details
Main Authors Cheng, Yuqing, Liu, Xiaoming, Zhang, Hui
Format Conference Proceeding
LanguageEnglish
Published SPIE 19.02.2024
Online AccessGet full text
ISBN1510674446
9781510674448
ISSN0277-786X
DOI10.1117/12.3021407

Cover

Abstract Aiming at the particle filtering algorithm's particle degradation and impoverishment easily lead to the decrease of filtering accuracy, which makes the target tracking accuracy and robustness decrease, a particle filtering algorithm based on the improved sparrow search algorithm (ISSA-PF) is proposed. Frog Leaping Algorithm (FLA) is used in the exploration phase of SSA to update the location of the discoverer. Self-adaptive adjustment of step size based on individual fitness values. Less adaptable individuals use larger step sizes to quickly jump out of local optima. The better adapted individuals use smaller step sizes to search the surrounding solution space more finely, thus improving the algorithm's optimization performance and search capability. Introducing a Levy flight strategy to simulate sparrow flight trajectories to perturb the optimal solution for each generation of the population. Expanding the algorithm's search range and accelerating convergence. The experimental results show that the algorithm proposed in this paper has higher target tracking accuracy as well as faster operation speed than the traditional Particle Swarm Particle Filtering algorithm (PSOPF), Gray Wolf Optimization Particle Filtering algorithm (GWO-PF), and Sparrow Search Particle Filtering algorithm (SSA-PF).
AbstractList Aiming at the particle filtering algorithm's particle degradation and impoverishment easily lead to the decrease of filtering accuracy, which makes the target tracking accuracy and robustness decrease, a particle filtering algorithm based on the improved sparrow search algorithm (ISSA-PF) is proposed. Frog Leaping Algorithm (FLA) is used in the exploration phase of SSA to update the location of the discoverer. Self-adaptive adjustment of step size based on individual fitness values. Less adaptable individuals use larger step sizes to quickly jump out of local optima. The better adapted individuals use smaller step sizes to search the surrounding solution space more finely, thus improving the algorithm's optimization performance and search capability. Introducing a Levy flight strategy to simulate sparrow flight trajectories to perturb the optimal solution for each generation of the population. Expanding the algorithm's search range and accelerating convergence. The experimental results show that the algorithm proposed in this paper has higher target tracking accuracy as well as faster operation speed than the traditional Particle Swarm Particle Filtering algorithm (PSOPF), Gray Wolf Optimization Particle Filtering algorithm (GWO-PF), and Sparrow Search Particle Filtering algorithm (SSA-PF).
Author Liu, Xiaoming
Zhang, Hui
Cheng, Yuqing
Author_xml – sequence: 1
  givenname: Yuqing
  surname: Cheng
  fullname: Cheng, Yuqing
  organization: Dalian Maritime Univ. (China)
– sequence: 2
  givenname: Xiaoming
  surname: Liu
  fullname: Liu, Xiaoming
  organization: Dalian Maritime Univ. (China)
– sequence: 3
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: Dalian Maritime Univ. (China)
BookMark eNotkEtLw0AURgesYFPd-AuyFlLvnUxmpkupr0LBjYK7MI87aTRNwkzQv2-KXX2czcfhZGzRDz0xdouwRkR1j3xdAkcB6oJlWCFIJYSQC7YErlShtPy8YllKXwBcV2qzZI-74xiHH_J5Gk2Mw2-eyER3yGeaWtdRHtpuotj2TT6Z2NCUT9G47xObrhliOx2O1-wymC7RzXlX7OP56X37WuzfXnbbh32RECpVOLKiArtBcp60l2ZWUNxrtE5gCBp0kC4AGgWCrIVKovckZanAgzO2XLG7_980tlTP3o7IzyapRqhPAWrk9TlA-QcSG1BS
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.3021407
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Zhang, Xin
Chen, Chunyi
Editor_xml – sequence: 1
  givenname: Chunyi
  surname: Chen
  fullname: Chen, Chunyi
– sequence: 2
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
EndPage 130632Z-10
ExternalDocumentID 10_1117_12_3021407
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
UT2
ID FETCH-LOGICAL-s1057-ceb450b91ecde8d6a85772d81bc41ff808f6cf01a704ebb0561dde66370d0cab3
ISBN 1510674446
9781510674448
ISSN 0277-786X
IngestDate Wed Feb 28 04:12:12 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1057-ceb450b91ecde8d6a85772d81bc41ff808f6cf01a704ebb0561dde66370d0cab3
Notes Conference Location: Changchun, China
Conference Date: 2023-10-20|2023-10-22
ParticipantIDs spie_proceedings_10_1117_12_3021407
PublicationCentury 2000
PublicationDate 20240219
PublicationDateYYYYMMDD 2024-02-19
PublicationDate_xml – month: 2
  year: 2024
  text: 20240219
  day: 19
PublicationDecade 2020
PublicationYear 2024
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.249929
Snippet Aiming at the particle filtering algorithm's particle degradation and impoverishment easily lead to the decrease of filtering accuracy, which makes the target...
SourceID spie
SourceType Publisher
StartPage 130632Z
Title Improved sparrow search particle filtering target tracking algorithm
URI http://www.dx.doi.org/10.1117/12.3021407
Volume 13063
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF7RcGlPQKnKUyvRGzK1d9de54gIKCBASICU9hJ51rvFapMAcS78ema964dKDrQXyx5ZdpxvPS_PfEPIN60TDSaCgGcRBiiaqwAEgyCBvskjBkZmVbXFdTK8FxejeNTOJ6y6S0o4Ui9L-0r-B1WUIa62S_YfkG0uigLcR3xxiwjj9i3GS02Nywmg04iKwbIpHvosxqNfEZZ3qazYBg9dzbedCaF-V52Jf37NnovyYdJ-4dfuxf-xeKrvYkt1ioUVjopsNumIm0zzcFF0UwdM2GrjjoK6vTnvhJNo-tFyCeEzgk4F2Q-8Mq1mDbb6EqMM3tF51TH72TGhXhK4gtUlSrpq82dH3BK2uaG3f5Feu9BEjiM29id9IKuMy5D1yOrx4Orytomq09gRKtY_1XbvNY_iSb3q49QT1OKlv7f3t0V8j4Xu-BV3a2Sz7bikNw3A62RFTzfIpw5Z5GcyqLGmHmvqsKY11rTBmjqsaY01bbDeJPdnp3cnw8DPwAjmdgJzoDSIOIR-pFWu0zzJ8HElyzHYUCIyJg1TkygTRpkMhQaw8SAaLHQjZZiHKgP-hfSms6n-SqhhnIOK87ifADrJGUASSwj73IgcZGS2yIH9G8btcp6P3-Kw_a6zdsjHdsHtkl75vNB76L2VsO_xewV-sj4b
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Improved+sparrow+search+particle+filtering+target+tracking+algorithm&rft.au=Cheng%2C+Yuqing&rft.au=Liu%2C+Xiaoming&rft.au=Zhang%2C+Hui&rft.date=2024-02-19&rft.pub=SPIE&rft.isbn=1510674446&rft.issn=0277-786X&rft.volume=13063&rft.spage=130632Z&rft.epage=130632Z-10&rft_id=info:doi/10.1117%2F12.3021407&rft.externalDocID=10_1117_12_3021407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon