基于鲁棒 EKF 的 MEMS-INS/GNSS/VO组合导航方法

U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial navigation system,MEMS-INS)、全球导航卫星系统(global navigation satellite system,GNSS)及视觉里程计(visual odometry,VO)的融合框架,给出了在GNSS信号失效情形下的导航滤波模型,并将EKF与Huber方法结合...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 44; no. 6; pp. 1994 - 2000
Main Authors 李文华, 汪立新, 沈强, 李灿, 吴宗收
Format Journal Article
LanguageChinese
Published 火箭军工程大学导弹工程学院,陕西西安710025 01.06.2022
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2022.06.27

Cover

Abstract U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial navigation system,MEMS-INS)、全球导航卫星系统(global navigation satellite system,GNSS)及视觉里程计(visual odometry,VO)的融合框架,给出了在GNSS信号失效情形下的导航滤波模型,并将EKF与Huber方法结合,克服观测量受噪声干扰时对导航性能的影响,以提升系统鲁棒性.经仿真和KITTI数据集验证,MEMS-INS/GNSS/VO组合导航方法在GNSS信号失效时仍能输出较高精度导航结果,且可以较好克服异常观测值对系统的影响,具有较高可靠性和鲁棒性.
AbstractList U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial navigation system,MEMS-INS)、全球导航卫星系统(global navigation satellite system,GNSS)及视觉里程计(visual odometry,VO)的融合框架,给出了在GNSS信号失效情形下的导航滤波模型,并将EKF与Huber方法结合,克服观测量受噪声干扰时对导航性能的影响,以提升系统鲁棒性.经仿真和KITTI数据集验证,MEMS-INS/GNSS/VO组合导航方法在GNSS信号失效时仍能输出较高精度导航结果,且可以较好克服异常观测值对系统的影响,具有较高可靠性和鲁棒性.
Author 汪立新
吴宗收
李文华
李灿
沈强
AuthorAffiliation 火箭军工程大学导弹工程学院,陕西西安710025
AuthorAffiliation_xml – name: 火箭军工程大学导弹工程学院,陕西西安710025
Author_FL LI Wenhua
LI Can
WANG Lixin
WU Zongshou
SHEN Qiang
Author_FL_xml – sequence: 1
  fullname: LI Wenhua
– sequence: 2
  fullname: WANG Lixin
– sequence: 3
  fullname: SHEN Qiang
– sequence: 4
  fullname: LI Can
– sequence: 5
  fullname: WU Zongshou
Author_xml – sequence: 1
  fullname: 李文华
– sequence: 2
  fullname: 汪立新
– sequence: 3
  fullname: 沈强
– sequence: 4
  fullname: 李灿
– sequence: 5
  fullname: 吴宗收
BookMark eNrjYmDJy89LZWBQMTTQMzQyNjDVz9LLLC7O0zM0MDDUNTUwi9AzMjAy0jMw0zMyZ2HghAtzMPAWF2cmGZgaGpubGpibcDKYP52_68muvpebGp8tnqTg6u2m8HxWi4Kvq2-wrqdfsL67X3Cwfpj_890tTyd0PF2_50XHqmfTdj7bPJWHgTUtMac4lRdKczOEurmGOHvo-vi7ezo7-ugWGxqYmuuamScbJpsaJxukWpgZmptbmFoYJ5qbGSdbGhuZpJolmZqZG5uZmBobGZumpVmmmielphgnWpqamKakmSclmlomGnMzaEHMLU_MS0vMS4_Pyi8tygPaGF9Rkp5cmVKVVQzyqoGZgZG5MQC_gFbT
ClassificationCodes U666.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2022.06.27
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL MEMS-INS/GNSS/VO integrated navigation method based on robust EKF
EndPage 2000
ExternalDocumentID xtgcydzjs202206027
GrantInformation_xml – fundername: (陕西省自然科学基础研究计划资助课题); (陕西省自然科学基础研究计划资助课题)
  funderid: (陕西省自然科学基础研究计划资助课题); (陕西省自然科学基础研究计划资助课题)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1057-67c1c53c0e861778583a763c9324e6b56736453235ff9e7bed3a9545df7ba59a3
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 视觉里程计
扩展卡尔曼滤波
组合导航
KITTI数据集
Huber方法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1057-67c1c53c0e861778583a763c9324e6b56736453235ff9e7bed3a9545df7ba59a3
PageCount 7
ParticipantIDs wanfang_journals_xtgcydzjs202206027
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2022
Publisher 火箭军工程大学导弹工程学院,陕西西安710025
Publisher_xml – name: 火箭军工程大学导弹工程学院,陕西西安710025
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.3883665
Snippet U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial...
SourceID wanfang
SourceType Aggregation Database
StartPage 1994
Title 基于鲁棒 EKF 的 MEMS-INS/GNSS/VO组合导航方法
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202206027
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29b9QwFLfaq4RgQHyKb51EPVVpc3Ec26Pd5qiAa4d-qFuV-JIihkPirhLchtShLAghwcDCwMaCBBOFP4e28F_wnpO7BCiosOR8jvM-8vLi34vs9wiZxqrVLMtzL00gVg2t5Z4M8syTaYK1GLNEJm6B7FK0uBbe3uAbE5NPa6uWtgfprB0eua_kf6wKfWBX3CX7D5YdE4UOaIN94QgWhuOxbExjTlWbGk3jEI8yprGiJgB4SOOIakZVMBPfac_QWFAF58OZTtxZ8SBiB6a3llbwZ30ZzxoDZx09n0qJDQ2E52ks8a_WSE9F1ChsGCDM67DWUWBIpCAFQgEFI6jm2KOBiHEySicjCANt7rgsIEegKTUuukAu88B69By4jgV3keMvBV4ksac-xLSciMDJOE6FrP5PQ4JSL1Cq-jhRoy_wrpl2_TMIRNDj5VruwS1HaaenjlF6FAdomKMUBvVCqkWpp45qt7WQQ_3hqmKwokpRHYAXlG3F0R4w2LRrDY6SSIUJlIrd3eUkg8vYuO8qOI5noSILZult9SkFkzfX4AlurTpy6oNYkru5D3nMjnnM4s3CFLVFCoZfkos_GmzZx93h_T6O8iM_EJNkKhAAQxtkSi907q5U2BqhaC02B9zOWLWJOcAKaK0Ky2NhgiiosD9vMQCnVawBcW6A2Q1HsCkEnOoqIY0EP0GmR2rN_UUpt9mulye9rRouXD1DTpcBXVMX3nmWTAzvnSOnamk-zxOx_2bv696z7x-eHLx90QR_bB6-3mmOPHEO_XBuffnw887-893991--7b47ePXp4OPLC2StHa_OL3plwRKvj-WyvUjYluXM-pmEwEBILlkC87eFGCnMopTjGsqQs4DxPFeZSLMuSxSEMN1cwKtRJewiafQe9LJLpCltN01tHuUy8sMkSVIpeMbTJLA2ZZG1l8nNUu3N8oXU3_zdmFeONeoqOVl51DXSGDzczq4D1B6kN8qH4AcVKpaT
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%B2%81%E6%A3%92+EKF+%E7%9A%84+MEMS-INS%2FGNSS%2FVO%E7%BB%84%E5%90%88%E5%AF%BC%E8%88%AA%E6%96%B9%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E6%9D%8E%E6%96%87%E5%8D%8E&rft.au=%E6%B1%AA%E7%AB%8B%E6%96%B0&rft.au=%E6%B2%88%E5%BC%BA&rft.au=%E6%9D%8E%E7%81%BF&rft.date=2022-06-01&rft.pub=%E7%81%AB%E7%AE%AD%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%AF%BC%E5%BC%B9%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89710025&rft.issn=1001-506X&rft.volume=44&rft.issue=6&rft.spage=1994&rft.epage=2000&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2022.06.27&rft.externalDocID=xtgcydzjs202206027
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg