基于鲁棒 EKF 的 MEMS-INS/GNSS/VO组合导航方法
U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial navigation system,MEMS-INS)、全球导航卫星系统(global navigation satellite system,GNSS)及视觉里程计(visual odometry,VO)的融合框架,给出了在GNSS信号失效情形下的导航滤波模型,并将EKF与Huber方法结合...
Saved in:
Published in | 系统工程与电子技术 Vol. 44; no. 6; pp. 1994 - 2000 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
火箭军工程大学导弹工程学院,陕西西安710025
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-506X |
DOI | 10.12305/j.issn.1001-506X.2022.06.27 |
Cover
Abstract | U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial navigation system,MEMS-INS)、全球导航卫星系统(global navigation satellite system,GNSS)及视觉里程计(visual odometry,VO)的融合框架,给出了在GNSS信号失效情形下的导航滤波模型,并将EKF与Huber方法结合,克服观测量受噪声干扰时对导航性能的影响,以提升系统鲁棒性.经仿真和KITTI数据集验证,MEMS-INS/GNSS/VO组合导航方法在GNSS信号失效时仍能输出较高精度导航结果,且可以较好克服异常观测值对系统的影响,具有较高可靠性和鲁棒性. |
---|---|
AbstractList | U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial navigation system,MEMS-INS)、全球导航卫星系统(global navigation satellite system,GNSS)及视觉里程计(visual odometry,VO)的融合框架,给出了在GNSS信号失效情形下的导航滤波模型,并将EKF与Huber方法结合,克服观测量受噪声干扰时对导航性能的影响,以提升系统鲁棒性.经仿真和KITTI数据集验证,MEMS-INS/GNSS/VO组合导航方法在GNSS信号失效时仍能输出较高精度导航结果,且可以较好克服异常观测值对系统的影响,具有较高可靠性和鲁棒性. |
Author | 汪立新 吴宗收 李文华 李灿 沈强 |
AuthorAffiliation | 火箭军工程大学导弹工程学院,陕西西安710025 |
AuthorAffiliation_xml | – name: 火箭军工程大学导弹工程学院,陕西西安710025 |
Author_FL | LI Wenhua LI Can WANG Lixin WU Zongshou SHEN Qiang |
Author_FL_xml | – sequence: 1 fullname: LI Wenhua – sequence: 2 fullname: WANG Lixin – sequence: 3 fullname: SHEN Qiang – sequence: 4 fullname: LI Can – sequence: 5 fullname: WU Zongshou |
Author_xml | – sequence: 1 fullname: 李文华 – sequence: 2 fullname: 汪立新 – sequence: 3 fullname: 沈强 – sequence: 4 fullname: 李灿 – sequence: 5 fullname: 吴宗收 |
BookMark | eNrjYmDJy89LZWBQMTTQMzQyNjDVz9LLLC7O0zM0MDDUNTUwi9AzMjAy0jMw0zMyZ2HghAtzMPAWF2cmGZgaGpubGpibcDKYP52_68muvpebGp8tnqTg6u2m8HxWi4Kvq2-wrqdfsL67X3Cwfpj_890tTyd0PF2_50XHqmfTdj7bPJWHgTUtMac4lRdKczOEurmGOHvo-vi7ezo7-ugWGxqYmuuamScbJpsaJxukWpgZmptbmFoYJ5qbGSdbGhuZpJolmZqZG5uZmBobGZumpVmmmielphgnWpqamKakmSclmlomGnMzaEHMLU_MS0vMS4_Pyi8tygPaGF9Rkp5cmVKVVQzyqoGZgZG5MQC_gFbT |
ClassificationCodes | U666.1 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12305/j.issn.1001-506X.2022.06.27 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | MEMS-INS/GNSS/VO integrated navigation method based on robust EKF |
EndPage | 2000 |
ExternalDocumentID | xtgcydzjs202206027 |
GrantInformation_xml | – fundername: (陕西省自然科学基础研究计划资助课题); (陕西省自然科学基础研究计划资助课题) funderid: (陕西省自然科学基础研究计划资助课题); (陕西省自然科学基础研究计划资助课题) |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
ID | FETCH-LOGICAL-s1057-67c1c53c0e861778583a763c9324e6b56736453235ff9e7bed3a9545df7ba59a3 |
ISSN | 1001-506X |
IngestDate | Thu May 29 04:00:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | 视觉里程计 扩展卡尔曼滤波 组合导航 KITTI数据集 Huber方法 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1057-67c1c53c0e861778583a763c9324e6b56736453235ff9e7bed3a9545df7ba59a3 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_xtgcydzjs202206027 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 系统工程与电子技术 |
PublicationTitle_FL | Systems Engineering and Electronics |
PublicationYear | 2022 |
Publisher | 火箭军工程大学导弹工程学院,陕西西安710025 |
Publisher_xml | – name: 火箭军工程大学导弹工程学院,陕西西安710025 |
SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
Score | 2.3883665 |
Snippet | U666.1; 针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter,EKF)的组合导航方法.设计了基于微惯性导航系统(micro-electro-mechanical system-inertial... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1994 |
Title | 基于鲁棒 EKF 的 MEMS-INS/GNSS/VO组合导航方法 |
URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202206027 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29b9QwFLfaq4RgQHyKb51EPVVpc3Ec26Pd5qiAa4d-qFuV-JIihkPirhLchtShLAghwcDCwMaCBBOFP4e28F_wnpO7BCiosOR8jvM-8vLi34vs9wiZxqrVLMtzL00gVg2t5Z4M8syTaYK1GLNEJm6B7FK0uBbe3uAbE5NPa6uWtgfprB0eua_kf6wKfWBX3CX7D5YdE4UOaIN94QgWhuOxbExjTlWbGk3jEI8yprGiJgB4SOOIakZVMBPfac_QWFAF58OZTtxZ8SBiB6a3llbwZ30ZzxoDZx09n0qJDQ2E52ks8a_WSE9F1ChsGCDM67DWUWBIpCAFQgEFI6jm2KOBiHEySicjCANt7rgsIEegKTUuukAu88B69By4jgV3keMvBV4ksac-xLSciMDJOE6FrP5PQ4JSL1Cq-jhRoy_wrpl2_TMIRNDj5VruwS1HaaenjlF6FAdomKMUBvVCqkWpp45qt7WQQ_3hqmKwokpRHYAXlG3F0R4w2LRrDY6SSIUJlIrd3eUkg8vYuO8qOI5noSILZult9SkFkzfX4AlurTpy6oNYkru5D3nMjnnM4s3CFLVFCoZfkos_GmzZx93h_T6O8iM_EJNkKhAAQxtkSi907q5U2BqhaC02B9zOWLWJOcAKaK0Ky2NhgiiosD9vMQCnVawBcW6A2Q1HsCkEnOoqIY0EP0GmR2rN_UUpt9mulye9rRouXD1DTpcBXVMX3nmWTAzvnSOnamk-zxOx_2bv696z7x-eHLx90QR_bB6-3mmOPHEO_XBuffnw887-893991--7b47ePXp4OPLC2StHa_OL3plwRKvj-WyvUjYluXM-pmEwEBILlkC87eFGCnMopTjGsqQs4DxPFeZSLMuSxSEMN1cwKtRJewiafQe9LJLpCltN01tHuUy8sMkSVIpeMbTJLA2ZZG1l8nNUu3N8oXU3_zdmFeONeoqOVl51DXSGDzczq4D1B6kN8qH4AcVKpaT |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%B2%81%E6%A3%92+EKF+%E7%9A%84+MEMS-INS%2FGNSS%2FVO%E7%BB%84%E5%90%88%E5%AF%BC%E8%88%AA%E6%96%B9%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E6%9D%8E%E6%96%87%E5%8D%8E&rft.au=%E6%B1%AA%E7%AB%8B%E6%96%B0&rft.au=%E6%B2%88%E5%BC%BA&rft.au=%E6%9D%8E%E7%81%BF&rft.date=2022-06-01&rft.pub=%E7%81%AB%E7%AE%AD%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%AF%BC%E5%BC%B9%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89710025&rft.issn=1001-506X&rft.volume=44&rft.issue=6&rft.spage=1994&rft.epage=2000&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2022.06.27&rft.externalDocID=xtgcydzjs202206027 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |